
Expert Systems With Applications 209 (2022) 118299

A
0

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Crypto-ransomware detection using machine learning models in file-sharing
network scenarios with encrypted traffic
Eduardo Berrueta a, Daniel Morato a,b,∗, Eduardo Magaña a,b, Mikel Izal a,b

a Public University of Navarre, Department of Electrical, Electronic and Communications Engineering, Campus Arrosadia, 31006 Pamplona, Spain
b Institute of Smart Cities, Tajonar 22, 31006 Pamplona, Spain

A R T I C L E I N F O

Keywords:
Crypto-ransomware
File-sharing traffic
Network security

A B S T R A C T

Ransomware is considered as a significant threat for home users and enterprises. In corporate scenarios, users’
computers usually store only system and program files, while all the documents are accessed from shared
servers. In these scenarios, one crypto-ransomware infected host is capable of locking the access to all shared
files it has access to, which can be the whole set of files from a workgroup of users. We propose a tool
to detect and block crypto-ransomware activity based on file-sharing traffic analysis. The tool monitors the
traffic exchanged between the clients and the file servers and using machine learning techniques it searches
for patterns in the traffic that betray ransomware actions while reading and overwriting files. This is the
first proposal designed to work not only for clear text protocols but also for encrypted file-sharing protocols.
We extract features from network traffic that describe the activity opening, closing, and modifying files. The
features allow the differentiation between ransomware activity and high activity from benign applications. We
train and test the detection model using a large set of more than 70 ransomware binaries from 33 different
strains and more than 2,400 h of ‘not infected’ traffic from real users. The results reveal that the proposed
tool can detect all ransomware binaries described, including those not used in the training phase. This paper
provides a validation of the algorithm by studying the false positive rate and the amount of information from
user files that the ransomware could encrypt before being detected.
1. Introduction

Crypto-ransomware is a type of malware that extorts computer
users by encrypting their files and requesting a ransom to recover the
file content. In 2016, EUROPOL declared that ransomware was ‘the
most prominent malware threat [. . .] for citizens and enterprises alike’
(EUROPOL, 2016). Since 2018, crypto-ransomware attacks have been
directed at companies in areas such as manufacturing, transportation,
telecommunication, finance, public law enforcement, and health ser-
vices (Cobb, 2018; TrendMicro, 2019). This is done because of the high
economic profits that malware developers can gain from each infection.
In 2019, the estimated financial damage caused by ransomware attacks
in the United States was $7.5 billion (Faghihi & Zulkernine, 2021).

In corporate environments, local computers used by the employees
store only system and program files. The valuable company documents
are stored in files on shared networked volumes (Intelligence, 2021).
This architecture facilitates the implementation of backup policies,
and offers sharing capabilities and extended access control. In case of

∗ Corresponding author at: Public University of Navarre, Department of Electrical, Electronic and Communications Engineering, Campus Arrosadia, 31006
Pamplona, Spain.

E-mail addresses: eduardo.berrueta@unavarra.es (E. Berrueta), daniel.morato@unavarra.es (D. Morato), eduardo.magana@unavarra.es (E. Magaña),
mikel.izal@unavarra.es (M. Izal).

a crypto-ransomware infection, host recovery is a simple procedure,
requiring just a disk cloning operation from a clean image of the system
and program files. No valuable documents should be lost because
they are not stored on the local computer. However, in these volume-
shared scenarios, a single infected computer can encrypt all the files
it has access to from the shared volumes, thereby creating a highly
compromised environment. An independent study of 5000 IT managers
across 26 countries (Sophos, 2020) revealed that 65% of ransomware
victims lost their data in network-shared volumes.

The proliferation of different strains of ransomware has given im-
petus to the development of detection tools focused on this type of
malware. In a previous survey (Berrueta et al., 2019), we analysed more
than 50 different tools, mainly from academia, and some from security
companies. The most effective tools are based on monitoring disk-
access activities (Continella et al., 2016; Kharraz et al., 2016), although
they are always tools installed in the local hosts. In a network file-
sharing scenario, disk-access information about operations on valuable
vailable online 30 July 2022
957-4174/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.eswa.2022.118299
Received 17 February 2022; Received in revised form 8 July 2022; Accepted 25 Ju
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ly 2022

http://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:eduardo.berrueta@unavarra.es
mailto:daniel.morato@unavarra.es
mailto:eduardo.magana@unavarra.es
mailto:mikel.izal@unavarra.es
https://doi.org/10.1016/j.eswa.2022.118299
https://doi.org/10.1016/j.eswa.2022.118299
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2022.118299&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Expert Systems With Applications 209 (2022) 118299E. Berrueta et al.
documents can also be obtained from network traffic. This facilitates
tool deployment. The network probe does not require any software
running on user hosts. The probe can simply monitor file-sharing traffic
from a network switch near the document repository.

Traditionally, information contained in network file-access protocol
messages is circulated in the clear on Local Area Networks (LANs).
However, owing to the popularization of public internet cloud services
and the increasing importance of confidentiality in network trans-
actions, these protocols are evolving into their encrypted versions.
Therefore, nowadays, a traffic monitor cannot obtain detailed informa-
tion about the disk-access activities, and the detection tools based on
such information do not work as desired. Until today, no tool is capable
of ransomware detection based on encrypted network file-sharing traf-
fic, as has been proved in several survey articles (Berrueta et al., 2019;
Bijitha et al., 2020; Herrera Silva et al., 2019; McIntosh et al., 2021).
The aim of this study is to fill this gap, and detect crypto-ransomware in
action (i.e. during the encryption of network-shared files) by analysing
features extracted from the encrypted network traffic. No previous
proposal has based its detection algorithm on encrypted file-sharing
traffic. The large number of features offered by this traffic requires
an analysis tool capable of detecting patterns in complex structures.
In this study, we train and test three machine learning (ML) models.
We evaluate models that could run efficiently at high speed in a
network probe. Using deep learning and an adequate set of features,
the accuracy of detecting an active ransomware in 30 s reaches 99.8%,
with a false positive rate of 0.004%.

The main contributions of this paper are:

• Present a crypto-ransomware detection tool based on the anal-
ysis of encrypted network traffic in file-sharing scenarios. This
requires extracting and filtering features that can distinguish be-
tween benign high activity traffic and ransomware activity. To the
best of our knowledge (Ahmed et al., 2021; Berrueta et al., 2019;
Bijitha et al., 2020; Faghihi & Zulkernine, 2021; Herrera Silva
et al., 2019; McIntosh et al., 2021), no previous proposal has
targeted this specific scenario with encrypted traffic.

• Compare the results from three different ML algorithms capable
of high speed classification. The comparison uses more than
50 h of crypto-ransomware file-sharing traffic from 67 different
ransomware binaries and 50 h of real user traffic from benign
applications. The validation is based on ransomware strains not
used in the training process (unseen binaries) and 2477 h of real
user traffic.

• Validate the detection results for the most popular file sharing
protocols in a corporate network. It is not an ad-hoc solution for
a single file-sharing protocol.

• Offer not only popular ML evaluation metrics to facilitate com-
parison with previous and future works but also more scenario-
oriented metrics. The latter are for example the elapsed time or
the number of bytes encrypted before detection and the number
of false alarms triggered.

• We uploaded all the datasets and the optimized and trained
ML model to a public repository to facilitate validation and
comparison (Berrueta et al., 2021).

The remainder of this paper is structured as follows: Section 2
summarizes the literature on ransomware detection and highlights the
unsolved problems tackled by the present proposals. Section 3 provides
a detailed explanation of the scenario and the methodology, including
the analysis of the datasets used for training, testing and validating the
models. Additionally, Section 3 describes the feature and time-sample
selection and the metrics that will be used to evaluate the quality of
the proposal. Section 4 presents the results of training, optimizing and
evaluating the ML models, selecting the one with highest accuracy
and showing the existent trade-offs in its design. Section 5 provides
a comparison of the results with those provided by other tools in the
2

literature. Finally, Section 6 states the conclusions.
2. Background and related work

Recent surveys (Berrueta et al., 2019; Bijitha et al., 2020; Her-
rera Silva et al., 2019) have analysed and compared a total of more than
70 different crypto-ransomware detection tools. Ransomware detection
tools have traditionally used similar techniques to antivirus tools, such
as those based on the static analysis of program binaries before they are
run (Hasan & Rahman, 2017; Reddy et al., 2021; Shaukat & Ribeiro,
2018). These techniques offer prevention, however, they are prone
to false negatives when new binaries are encountered or obfuscation
techniques are used (Chen et al., 2017; Vidyarthi et al., 2019), they
cannot cope with the large number of signatures created by the new
ransomware-as-a-service offerings (Nieuwenhuizen, 2016), and they
are oblivious to file-less ransomware variants (Victor, 2020). Static
prevention techniques are being substituted by architectures where
indicators are extracted from monitoring the actions taken by any
program running at the user’s host. These monitored indicators allow
the detection of crypto-ransomware activity while it is probably already
encrypting files, therefore the most wanted feature is early detection
with minimum damage.

Please beware that the work presented in this article is focused on
the detection of crypto-ransomware, and not other malware families
that ask for a ransom for unlocking a computer (locker-ransomware),
or they focus on information exfiltration. On the following we use the
terms ‘ransomware’ and ‘crypto-ransomware’ interchangeably, meaning
always ‘crypto-ransomware’.

In this section we present a short review of the different architec-
tures in crypto-ransomware detection tools, centred on the classifica-
tion of the indicators and on the analysis functions employed. This
review shows how the proposal in this article fits in the literature.
For further details about each tool, we refer the reader to the above-
mentioned survey papers. We present a more critical analysis, and a
detailed comparison of the benefits offered by our proposal with respect
to previous works in Section 5 of this paper, once the results have been
described.

The indicators analysed by the detection tools and describing the
activities being taken by a suspect program are most often extracted
locally to the host where the suspect program is running (Ahmadian
et al., 2015; Alam et al., 2018; Almashhadani et al., 2020; Cabaj &
Mazurczyk, 2016; Continella et al., 2016; Hasan & Rahman, 2017;
Kharraz et al., 2016; Moussaileb et al., 2018; Scaife et al., 2016;
Sgandurra et al., 2016). This strategy offers the highest visibility of
malware actions using different types of system call interception tech-
niques (Ahmed et al., 2020; Alam et al., 2018; Chen et al., 2017;
Vinayakumar et al., 2017). A less frequent group of indicators can
be obtained from network traffic crossing a switching point, usually
an Internet access router (Hasan & Rahman, 2017; Lu et al., 2017).
This second set of indicators can be obtained without the installation
of malware detection software locally to the user’s host; they can be
obtained using an independent network traffic probe.

The most significant locally-obtained features describe disk activ-
ity reading and writing files, as well as the creation of encrypted
content on the written data. All this information is easily obtained
by intercepting disk access input/output (I/O) operations (Continella
et al., 2016; Hasan & Rahman, 2017; Kharraz et al., 2016; Lu et al.,
2017; Paik et al., 2016; Scaife et al., 2016; Sgandurra et al., 2016).
Complex detection tools add to the previous feature information such
as the use of functions from external libraries (searching for encryp-
tion libraries) (Continella et al., 2016; Sgandurra et al., 2016) or the
identification of directories in which the read or write operations are
performed (Ahmadian & Shahriari, 2016; Kharraz et al., 2016; Lu et al.,
2017; Moussaileb et al., 2018; Sgandurra et al., 2016).

All these tools require being installed locally on every user host
and suffer three serious drawbacks. First, they impose a management
burden coming from their installation and frequent update tasks when a

large set of hosts is involved (Berrueta et al., 2019; Morato et al., 2018).

Expert Systems With Applications 209 (2022) 118299E. Berrueta et al.
Fig. 1. Monitoring scenario with ransomware detection tool based on network traffic.

Second, locally installed software that analyses system calls consumes
CPU cycles at the user host, having a potential impact on computer
responsiveness (Continella et al., 2016; Kharraz et al., 2016; Mehnaz
et al., 2018; Shaukat & Ribeiro, 2018; Shukla et al., 2016). Third,
malware capable of escalating privileges could deactivate the detection
tool (Loman, 2019).

All these drawbacks are not present when there is no locally in-
stalled tool at the users’ hosts, but the indicators are extracted solely
from network traffic obtained at a network switching point. The de-
tection tool is then installed on a single independent network probe
that receives a copy of the traffic from a large population of users
through a port-mirror in a network switch, being capable of monitoring
all operations on shared files (Fig. 1). This network probe is an analysis
server that can be isolated from common vulnerabilities by being
connected to a different network segment. Having no human user, the
network probe is not vulnerable to social-engineering attacks, which
are a frequent attack vector in ransomware infiltration (Berrueta et al.,
2019; Sjouwerman, 2019).

The main drawback of detection tools based solely on network
traffic is that they cannot monitor local features, specially local disk
access operations. However, in a corporate environment, local files are
system files, easy to recover and without real value. The analysis of not
only remote file operations but also local disk access operations could
improve detection time, but only for crypto-ransomware variants that
attack system files before they attack user documents. Moreover, this
improvement would come at the expense of an impact on computer
responsiveness due to the locally installed analysis tool in every user
host.

File access operations on valuable documents are visible from a
network traffic probe by monitoring the traffic exchange between the
users’ hosts and the file servers. Most detection proposals designed
based on local interception of disk access system calls can still be
applied to a file-sharing scenario because remote-access protocols offer
the applications an interface to the shared files using the local file
system.

We previously designed and validated a crypto-ransomware detec-
tion technique based on file-sharing traffic (Morato et al., 2018). This
is the only published work focusing on the corporate network scenario.
We analysed the protocol messages in the Server Message block version
2 (SMBv2) protocol, the most common file-sharing protocol in the Mi-
crosoft Windows environment for the local area network. The detection
tool required the metadata about the disk I/O operations – contained in
the file-sharing protocol messages – therefore it could only be used for
SMBv2, when the protocol does not send encrypted messages. In this
paper we present a different detection technique, still based on network
traffic but capable of detecting crypto-ransomware when different file-
sharing protocols are employed (not restricted to SMB), even when they
use encryption at the protocol level.

Please beware of the distinction between encryption at the protocol
level and encryption at the application level. Even if the application is
ransomware trying to overwrite a file with encrypted content, a clear-
text file sharing protocol will send protocol messages where the type of
3

operation, the file path, the byte position in the path, will all be on-the-
clear, even though the content written was encrypted. The algorithm
described in Morato et al. (2018) required clear-text protocol messages;
however, this is not available in new file-sharing protocols that use
encrypted transport.

Up to this point, we have established the convenience of a mon-
itoring architecture based on the indicators obtained from network
file-sharing traffic. An analysis function takes these indicators and uses
them to accomplish the classification of the suspect program traffic.
The complexity of the analysis function varies in the literature. In some
cases it only establishes thresholds to the measured metrics (Kharraz
et al., 2016; Mbol et al., 2016; Paik et al., 2016), while most often
a combined metric from a large number of indicators is built (Moore,
2016; Morato et al., 2018; Scaife et al., 2016). In recent years, machine
learning techniques have gained popularity thanks to their ease of
use and their capacity of searching for patterns in a large number of
features (Ahmadian & Shahriari, 2016; Ahmed et al., 2020; Almash-
hadani et al., 2019; Arabo et al., 2020; Continella et al., 2016; Hasan
& Rahman, 2017; Hirano & Kobayashi, 2019; Lee et al., 2019; Lu et al.,
2017; Moussaileb et al., 2018; Reddy et al., 2021; Roy & Chen, 2020;
Scaife et al., 2016; Sgandurra et al., 2016; Vinayakumar et al., 2017).

These new solutions take a similar set of input features to previous
proposals, from a similar scenario, and they use a new technique for
the analysis. They usually compare some ML models, choosing the one
offering the best results (Ahmed et al., 2020; Cohen & Nissim, 2018;
Hwang et al., 2020), but sometimes the authors select the machine
learning model without any comparison and try to improve its effec-
tiveness by parameter tuning of the algorithm (Roy & Chen, 2020) or
by changing the feature extraction process (Zhang et al., 2020).

In this work we show that an ML model can be applied to effectively
detect crypto-ransomware when using as input to the algorithm fea-
tures obtained from file-sharing network traffic using an encrypted or
unencrypted protocol. We design these features to provide a learnable
distinction between traffic form ransomware encrypting files or from
benign applications. To the best of our knowledge, no previous work
in the literature or industrial tool has solved the problem of detect-
ing crypto-ransomware activity on the base of encrypted file-sharing
traffic. We believe it is an interesting scenario that can take advan-
tage of characteristics such as better scalability, due to not requiring
installing monitoring software in any host or file-sharing server and,
being completely off-path, it does not interfere with user actions.

3. Scenario and methodology

Fig. 1 illustrates a population of users in a corporate LAN, accessing
files from a common server. Crypto-ransomware running at one of
the hosts can read large amounts of data from the files stored in the
server and write the encrypted version of those files in the same server.
Crypto-ransomware detection can be accomplished by detecting the
file-sharing traffic these read, write, delete, and rename actions that
the ransomware performs during its progress.

A network probe can capture and analyse the traffic without any
effect on network latency, response time, or computer responsiveness
because the probe is not in the traffic path but monitoring a copy of
the traffic. Using commodity hardware, traffic rates in the order of tens
of gigabits per second can be captured and processed (Julián-Moreno
et al., 2018). We will evaluate simple ML models that could sustain
these traffic rates without significant degradation in analysis time.

Recent protocols in network file-sharing scenarios are commonly
transported over TCP/IP. The most commonly used protocol, both
in enterprise and home deployments, is server message block (SMB),
particularly its second and third versions (SMBv2 and SMBv3, respec-
tively). Despite the availability of other file-sharing protocols such
as network file system (NFS) (Haynes & Noveck, 2015) and Apple
filing protocol (AFP) (Apple, 2012), the extended use of the Windows
operating system (OS) in corporate environments makes SMB the most

Expert Systems With Applications 209 (2022) 118299E. Berrueta et al.
popular protocol because it is the default file-sharing protocol used in
this OS. In mixed Windows-UNIX environments, NFS can be (but rarely)
the protocol of choice, while in a mixed Windows-macOS environments
it is SMB (supported in macOS) and not AFP (not supported in Win-
dows) (NetGear, 2016). Microsoft Windows is also the target of most
ransomware attacks, so most binaries run only on this operating system
and it will be the subject of analysis in this work, combined with SMB
and to a lesser extent with NFS.

Network traffic offers a plethora of metrics: number of TCP con-
nections, bytes transferred, sequence of messages between client and
server, packet sizes, inter-packet times, inactivity times, connection
durations, and sequences (in time) of any of these, to name a few. We
resort to ML techniques, which have been validated in previous works
as adequate tools in this type of scenario (Ahmed et al., 2020; Zhang
et al., 2020). ML algorithms can analyse these complex data structures,
and once they are trained with a complete dataset, they can generalize
to different input data. The most adequate set of features used in
training the ML model depends on the characteristics of file-sharing
traffic. In the following sections we describe the network protocol
scenario, the methodology for constructing the feature dataset we used
in training and testing, the models that will be evaluated, and the
metrics used for this task.

3.1. Protocol behaviour

In this study, we consider a network file-sharing scenario where the
server and clients communicate using the SMB protocol. In Morato et al.
(2018), we considered such a scenario, although only for version 2 of
the protocol (version 1 has been deprecated since 2014 Pyle, 2020). We
extend the results to SMBv3 and NFS, which implies significant changes
in network traffic. SMBv3 is the default and recommended version
since Windows 8 and Windows Server 2012 (NetApp, 2018). This
version introduced message encryption and some other changes to the
original protocol, making it more secure. The added encryption layer
makes it impossible for traffic analysis tools to distinguish messages
and different user activities. This version is expected to become the
most popularly deployed version of the SMB protocol in enterprises
migrating from deprecated versions of the Windows OS (Microsoft,
2020).

SMB is a request–response protocol transported over TCP using a
single connection to a well-known server port (value 139 or 445), and
with 19 different commands in its second and third versions. Each
command corresponds to one action that the client issues over a server
file, volume or directory. These commands can be considered similar
to the input/output operations (I/O ops) performed locally at the user’s
computer. Moreover, our previous investigation has revealed that it is
possible to detect ransomware in action, based on the commands from
the SMBv2 protocol (Morato et al., 2018).

The only difference in protocol messages between SMBv2 and
SMBv3 is an added 52-bytes header in the latter, describing the pres-
ence of encryption. Owing to this encryption, the command type and
parameters such as the file path or the file offset cannot be identified.
Tools based on the analysis of these commands cannot successfully
detect ransomware in the encrypted version of SMB. Although it is
impossible to view the client operations, some features can be extracted
from the encrypted network traffic, which could allow accurate identi-
fication of the ransomware actions. This study is focused mainly on file
sharing using the SMB protocol, however, the procedure employed is
extensible to other request–response file-access protocols such as NFS,
even with encrypted traffic, as will be proved in Section 4.3.

3.2. Dataset

Two types of samples are used in this study: (i) those from traf-
4

fic captured while crypto-ransomware was encrypting network-shared
files (‘infected’) and (ii) those from staff office users running benign
applications and accessing shared files (‘not infected’).

The traffic traces for the ‘infected’ case were obtained from a repos-
itory we built and shared publicly in (Berrueta et al., 2020; Berrueta
et al., 2022). This repository comprises traffic traces from more than 70
ransomware programs. All these ransomware programs were obtained
from Hybrid-Analysis1 and Malware-Traffic-Analysis.2 Each binary was
executed more than once, generating 150 traffic traces in total. They
were captured while the malware was encrypting a large file set shared
by an SMB server. We obtained more than 50 h of ransomware activity
from these traffic traces.

Table 1 shows a summary of the ransomware strains present in our
public repository. We have collected binaries from crypto-ransomware
families with different file-access behaviours. There are variants that
apply compression to the written data (CTBLocker), variants that batch
the file deletion operations (WannaCry), variants that do only partial
overwrites of the original files (Shade), or variants operating at low
speeds (Revenge), to name a few relevant features. More detail about
the binaries and the traffic traces can be found in Berrueta et al. (2020)
or Berrueta et al. (2022); we offer statistics, downloadable traffic files,
links to the malware binaries, and text files containing all the file-access
operations executed.

From these crypto-ransomware execution traffic traces, we sepa-
rated seven recent families. They are not included in the training set
but further used to check whether they are accurately detected or not,
even when they are not part of the learning process (we name them
as ‘unseen’ samples). These seven families are: bitPaymer (appearing
in November 2019), Shade (November 2019), Sodinokibi (one variant
obtained in July 2019 and two in March 2020), Phobos (May 2019),
Stop (January 2019 and February 2020), RansomX (June 2020) and
Shaofao (August 2020). All those unseen binaries that could run in a
Windows 10 environment (5 out of 10) were also run in a scenario
using NFS protocol, and employed in the multi-protocol validation of
the detection model (Section 4.3).

The ‘not infected’ samples were obtained from network traffic traces
captured in a campus LAN, wherein staff users access files from shared
servers. We collected 2527 h of ‘not infected’ traffic. This represents
316 intervals of 8 working hours. For each 8-h connection, on average,
7640 files were opened, and 91.4 and 294 MB data per connection
were read and written, respectively. There are no identifiable personal
data in this dataset because we cannot identify the users based on
the IP addresses; only the Information Technologies (IT) department
has that information and it was not shared with the researchers. No
malware infection reports were received from any user during the
traffic recollection period.

From these three groups (‘infected, ‘not infected’, and ‘unseen’), we
extracted samples to create three different datasets. The first dataset:
the training and testing dataset, comprises all 50 h of ransomware
samples labelled as ‘infected’, and a selected set of 50 h of user samples
labelled as ‘not infected’. We used 80% of this first dataset for training
the algorithm and the remaining 20% for testing it. During the testing
phase, we measured accuracy, F-measure, precision, recall, and phi-
coefficient of each model (Almashhadani et al., 2020). These metrics
allow an easy comparison with previous and future proposals based also
on ML models. Subsequently, we selected the most effective algorithm
from a group of ML models that could provide fast evaluation in a
network probe.

The second dataset comprises 2477 h of user activity, also labelled
as ‘not infected’, which are not included in the training and testing
dataset. This dataset is used for an extended test of the false positive
rate, i.e., it is used to measure situations wherein ransomware is falsely
detected. This false positive rate determines the usability of the tool

1 https://www.hybrid-analysis.com.
2 http://www.malware-traffic-analysis.net.

https://www.hybrid-analysis.com
http://www.malware-traffic-analysis.net

Expert Systems With Applications 209 (2022) 118299E. Berrueta et al.
Table 1
Characteristics of the traffic traces from 26 ransomware families (67 binaries) used in the training phase and 7 ransomware families (10 binaries) not used in the training phase
but only in the evaluation phase.

Family Binaries Date of first binary Date of last binary Total read/write operations Total traffic trace duration (min)

CryptoFortress 1 March 2015 March 2015 105k/89k 28.7
TeslaCrypt 1 December 2015 December 2015 26k/26k 25

Cerber 13 February 2016 February 2017 746k/721k 292.4
DMALocker 1 February 2016 February 2016 470k/169k 147.2
Locky 10 February 2016 August 2016 1251k/1287k 982
VirLock 3 July 2016 August 2017 415k/560k 273
Bart 1 September 2016 September 2016 163k/441k 37.2
CrypMIC 1 September 2016 September 2016 212k/137k 12.1
CryptFile2 1 November 2016 November 2016 127k/127k 4.48
CryptoMix 4 November 2016 January 2016 373k/372k 125.2
Crysis 11 December 2016 December 2018 155k/236k 1994

CryptoShield 2 January 2017 February 2017 140k/140k 230
CTBLocker 1 January 2017 January 2017 172k/10k 19.2
MRCR 1 January 2017 January 2017 103k/91k 1038
Zeus 1 February 2017 February 2017 124k/75k 12.5
GlobeImposter 1 May 2017 May 2017 1161k/592k 33.5
Jaff 2 June 2017 June 2017 264k/324k 82.3
Aleta 1 July 2017 July 2017 104k/142k 121
Spora 1 May 2017 May 2017 37k/26k 8.9
WannaCry 2 May 2017 May 2017 264k/458k 2466

Sage 2 January 2018 May 2018 329k/370k 57.4
Revenge 1 March 2018 March 2018 60k/84k 21.5
Maktub 1 April 2018 April 2018 16k/10k 3.5
Mole 1 May 2018 May 2018 137k/175k 23.3

Ryuk 1 April 2019 April 2019 98k/130k 10.2
GandCrab 2 May 2019 May 2019 73k/55k 79.7

Unseen ransomware strains

BitPaymer 1 August 2019 August 2019 121k/128k 121.36
Shade 1 September 2019 September 2019 101k/90k 18.5
Sodinokibi 3 September 2019 March 2020 269k/253k 248
Phobos 1 November 2019 November 2019 43k/66k 106
STOP 2 December 2019 February 2020 76k/70k 34.5
RansomX 1 February 2020 February 2020 78k/44k 14.7
Shaofao 1 March 2020 March 2020 23k/66k 14.7
because a large number of false positives render the tool unusable in a
real environment. The absolute number of false positives or the number
relative to the period of time (alarms per day or alarms per month) is a
better indicator of model quality than the accuracy metric. It provides a
better insight on the cost on network administrator working-hours that
the false alarms can incur.

Finally, the ‘unseen’ dataset comprises samples extracted from the
newest ransomware traffic traces. Using this dataset, the capability of
the tool to detect the activity from unseen crypto-ransomware binaries
is measured. Furthermore, we measure the number of files and bytes
that the crypto-ransomware encrypts before detection. These metrics
are better suited to the ransomware scenario than traditional precision
or recall metrics. They provide a scenario-oriented evaluation, instead
of an abstract ML-model-oriented evaluation.

Fig. 2 summarizes the process of dataset creation for training and
evaluation. Further details about sample filtering are provided in the
next sections.

3.3. Feature extraction

Crypto-ransomware programs read and write large amounts of bytes
for encrypting user files. While some ransomware strains overwrite the
content of the original files, others create new encrypted files before the
deletion of the original. In both cases, reading the original and writing
the new encrypted one must be performed by ransomware before
trying to extort the users. They can compress the output encrypted file,
however, they still move large amounts of data to compromise as many
files as possible. Crypto-ransomware tries to complete this process as
fast as possible to avoid being detected when the user tries to open a file
and discovers that it is unreadable. However, the speed of these actions
depends on the complexity of the encryption algorithm, the efficiency
5

of its implementation, the hard disk speed or the CPU power. A too-slow
encryption hampers the ability of the crypto-ransomware to perform an
effective threat because backup policies can be triggered before it can
alter a large number of modified and non-backuped files.

Owing to the encryption of file-sharing traffic in recent protocols,
a significant amount of metadata about these actions remains hidden
from network traffic monitors. These monitors can only record packet
endpoint addresses, arrival times, sizes, and direction (from client to
server or vice versa). Based on this information, the network probe can
only guess the file-access actions performed by the user. These actions
could involve opening a file, closing it, obtaining information about it,
changing its metadata, writing content to it, or reading content from it.
Based on the aforementioned limitation, we define the following three
actions:

• Bytes are being written (Fig. 3(a)): We consider a write operation
when there is a one-packet response for a large (more than one
packet) request. In Fig. 3(a), we name these bytes as ‘bytes
Client–Server’.

• Bytes are being read (Fig. 3(b)): We consider a read operation
when there is a one-packet request and a large response (more
than one packet). In Fig. 3(b), we name these bytes as ‘bytes
Server–Client’.

• Control or short commands (Fig. 3(c)): These commands include
operations such as delete, rename, open, and close file. They do
not require a large amount of data describing the command; they
can usually fit into a single-packet request from client to server
and a single-packet response from server to client. Beware that
short read or write actions whose data fits into a single packet are
indistinguishable from control commands; however, the operating
system tends to batch disk access operations to optimize the data

flow, making this event unlikely.

Expert Systems With Applications 209 (2022) 118299E. Berrueta et al.

p
t
b
t

a
w
i
s
t
i
f
F
s
d
2
o
p
t
d

i
w
W
u
a
t
o

Fig. 2. Training, testing and evaluation process.
Fig. 3. Write operations (a), Read operations (b), and short commands (c) between client and server.
Crypto-ransomware performs frequent file-access operations, com-
ared to a typical office program. However, in some user behaviours,
he number of bytes read and written can be equal or higher than those
y crypto-ransomware during a short period of time. One example of
hese intense behaviours is the duplication of data in the server.

Fig. 4 presents the bytes (a) read and (b) written per second by
ransomware (Cerber) encrypting a shared directory, and by a user
hile duplicating all the files in the directory. Herein, the user activity

s greater than that of the ransomware because the user does not
uffer the burden of encrypting the files. It is not easy to distinguish
he two cases by only considering the bytes read and written, the
nter-arrival packet times or the packet sizes. To this end, we need a
eature that can differentiate these extreme cases of similar activity.
ig. 5 presents the number of short commands per second for the
ame traffic traces. This number is significantly lower for directory
uplication. In-depth study of ransomware behaviour (Berrueta et al.,
019) reveals that when ransomware encrypts files, it must delete the
riginal ones and sometimes create extra files in each directory with
ayment and decryption instructions for the victim. These actions lead
o the difference in the number of short commands and enable us to
ifferentiate both cases.

Consequently, similar to the detection techniques run locally on the
nfected host, crypto-ransomware activity can be recognized from net-
ork traffic based on the traffic pattern between the client and server.
hen network traffic comprises clear-text, the detection tool can also

se the file-access action types to assist in differentiating ransomware
ctions from benign applications (Morato et al., 2018). The analysis
ool knows the commands being used (changing file names, deleting or
6

verwriting files) and it can also measure the higher entropy in written
encrypted file content. In scenarios where all disk access commands
are encrypted, these metadata about user actions are not available,
however the aforementioned new feature, based on the number of
control or short commands, can still be utilized as a differentiator
between both types of actions.

All these features cannot be extracted for a single packet — they
are the result of traffic accumulated during a (preferably) short pe-
riod of time. The larger the analysis window is, the easier it is to
distinguish crypto-ransomware from benign applications, owing to the
larger variability in disk-access patterns in the latter. However, the
larger the analysis window is, the larger the period of time to detect
the crypto-ransomware and the number of files lost before it can be
blocked.

Analysis of the abovementioned traffic features (number of bytes
read, written, or control commands) is performed for each TCP connec-
tion between one client and the server. We measure the traffic features
in per-second time intervals, and we introduce a temporal window of
T seconds to create complete time-samples for the learning process.
Hereafter, the term ‘sample’ means the time windows composed by
3 × T features (bytes read, written and short commands) that are input
into the classification model. The term ‘samples’ should not be confused
with the ransomware executables that are sometimes called ‘samples’
in the literature. We refer to the latter as ‘ransomware binaries’. Fig. 6
illustrates an example for T = 10 s, where N = 3 × 10 = 30 features are
present in each sample. For each 1-s interval, the traffic probe computes
the following.

• Total number of short commands where the response is contained
inside the window.

Expert Systems With Applications 209 (2022) 118299E. Berrueta et al.

T
a
i
w

p
o
d
i
w
d
(
1

t
T
t
H
i
t
m
e
e

Fig. 4. Bytes (a) read and (b) written per second by ransomware and user.
Fig. 5. Short commands per second performed by user and ransomware.

• Total number of data (TCP bytes) in the packets sent from the
server to client in read operations.

• Total number of data (TCP bytes) in the packets sent from client
to server in write operations.

hese features represent the control commands, read actions, and write
ctions, respectively. The complete sample for the machine learn-
ng model comprises these three values for every second in the time
indow of T seconds.

The next sample is created with traffic out of the window from the
revious one. We can slide the time window a small amount of time
r as much as the window length T, creating samples without shared
ata. In the example of Fig. 6, the next sample without shared data will
nclude the features between the 10th and the 20th second; therefore,
e generate one sample every T seconds. A new sample with shared
ata could be built by sliding the windows for example only 1 or 2 s
or even a fraction of a second), creating a new set with data from the
st to the 11th second or from the 2nd to the 12th second respectively.

Parameter T and the sliding window step are tuneable. The de-
ection accuracy and data loss depend on them. With an increasing
, the samples comprise an increasing number of time-intervals, and
he algorithm can learn more complex relations between features.
owever, detection of ransomware would require more time (especially

f it requires more than one sample) and the user will lose more data in
he process. With a small sliding step, the new sample does not contain
uch new information, however the detection algorithm could react

arlier to abrupt changes in the traffic pattern. We will evaluate the
ffect of both strategies during the optimization process.
7

3.4. Sample filtering

ML models require significant and adequate sets of learning samples
for the behaviours that they must classify (Sommer & Paxson, 2010).
The different activities (from benign applications and malware) must
be accounted for without over-representation of some of them, which
could result in ignoring significant patterns.

In the learning process, we used all the ransomware samples avail-
able, removing only the inactivity time before the first file was opened
for encryption and after the last file was altered by the malware.

Compared to this ransomware activity, network file-sharing traffic
from office users is highly intermittent, with large thinking times, for
which no significant amount of traffic occurs. Samples from benign
users must be selected by considering the higher popularity of time
periods for which no traffic exists and being especially cautious by
providing enough learning samples where user actions create network
traffic.

We studied each of the three features while comparing ‘not infected’
and ‘infected’ samples. In Fig. 7, the complementary cumulative distri-
bution functions for the bytes written per second in an ‘infected’ trace
and a ‘not infected’ one are plotted — the probability 𝑃 (𝑏𝑦𝑡𝑒𝑠𝑊 𝑟𝑖𝑡𝑡𝑒𝑛 ≥
𝑥) of more than a certain amount of bytes being written in one second.
For crypto-ransomware samples, only 20% 1-s intervals contain no
written bytes, whereas for user traffic, more than 99% 1-s intervals
are inactive intervals in terms of written bytes. A similar situation is
revealed for the bytes read. The training of the ML algorithm requires
a significant number of ‘not infected’ samples where the user is ac-
tive. This number is not proportional to their presence in relation to
non-active intervals; they represent a significantly smaller number. A
random selection of samples could result in selecting a large set of
low activity benign samples and therefore the learning process could
ignore rare high-activity benign users and generalize that high activity
is always indicative of crypto-ransomware action (Sommer & Paxson,
2010).

To avoid this bias, we include in the training set all the ‘not infected’
samples where at least one of the 1-s intervals carries at least 5 MB
(read or written). We also included all the samples with at least one 1-
s interval containing more than 100 short commands. This guarantees
a sufficient representation of high-activity benign user intervals. We
completed this ‘not infected’ training set with a random selection of
samples from those remaining, up to the ‘infected’ set size, providing a
balanced two-classes training scenario.

Expert Systems With Applications 209 (2022) 118299E. Berrueta et al.
Fig. 6. Example of feature extraction in T seconds.
Fig. 7. Complementary cumulative distribution function for the bytes written per
second.

3.5. ML models and evaluation metrics

This paper analyses three ML models that could efficiently be im-
plemented in a network probe that is classifying traffic in real-time:
decision trees (DTs), tree ensembles (TEs), and neural networks (NNs).
DTs are the simplest of these three models; however, they are suscep-
tible to over-fitting. They have been used for ransomware detection in
research articles such as Almashhadani et al. (2020), Moussaileb et al.
(2018) and Mehnaz et al. (2018). TEs combine DTs and are capable
of finding more complex relations between features, although at the
expense of a higher model complexity. The authors of Almashhadani
et al. (2020) and Lee et al. (2019) analysed the capability of TEs
to detect ransomware, achieving high detection rates. Finally, NNs,
owing to their flexibility, are popular models in the literature (Agrawal
et al., 2019; Almashhadani et al., 2020; Maniath et al., 2017; Roy &
Chen, 2020; Shaukat & Ribeiro, 2018). NNs are more complex than
DTs or TEs; however, model computation is only required once every
T seconds (see Section 3.3) which does not impose a critical speed
requirement.

These three models were trained and tested using bigML3 with
the dataset described in Sections 3.2, 3.3, and 3.4. The best model is
selected based on several binary classification metrics. These metrics

3 https://bigml.com.
8

can be derived from the confusion matrix, and they are defined in
Eqs. (1) to (5), where TP means ‘true positive’, FP means ‘false positive’,
TN means ‘true negative’, and FN ‘false negative’.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

(1)

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑐𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(2)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(3)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(4)

𝑃ℎ𝑖 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁
√

(𝑇𝑃 + 𝐹𝑃) × (𝑇𝑃 + 𝐹𝑁) × (𝑇𝑁 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑁)
(5)

For computing these metrics, each sample contains N features,
covering a time interval of T seconds.

In a crypto-ransomware detection technique based on the dynamic
analysis of actions taken by the suspect program, the number of false
positives has a more significant effect in the usability of the tool than
the number of false negatives. One false negative means that the crypto-
ransomware has not been detected in the first T seconds, but it may
be detected in the next time window. However, a high number of
false positives could reduce user confidence in the detection system,
thereby increasing the possibility of the user ignoring a true alarm.
Consequently, in the metrics presented, precision is more relevant than
recall.

To reduce the number of false alarms and maximize true detections,
we tune the value of the time window length parameter (T) in each
model (see Section 4.1) The model with the best results is consequently
optimized and validated in Section 4.2. On the final evaluation, we
have added the following scenario-specific metrics:

• Time for crypto-ransomware detection: The time that the tool
takes to detect ransomware. It depends on the window length
parameter.

• Data lost before crypto-ransomware detection: The amount of
data (measured in megabytes) lost due to encryption. We account
for the whole file size even if the crypto-ransomware encrypts
only part of the file before it is detected. It is a pessimistic metric,
but it is safer to assume that the file may not be recoverable even
if only part of it was encrypted.

• Number of working days until a false positive: It is the number of
8-h working days that it is expected to be without a false positive.
It is computed based on a dataset containing 309 8-h working
days (those not used in the training phase).

https://bigml.com

Expert Systems With Applications 209 (2022) 118299E. Berrueta et al.

t
a
s
l
h
1
r

Table 2
Test results for DTs.

T. samples (s) Accuracy (%) F-measure Precision (%) Recall (%) Phi-coefficient

10 98.9 0.9865 98.5 98.8 0.9779
20 98.8 0.9815 98.1 98.1 0.9725
30 98.7 0.9786 98.4 97.3 0.9697
40 98.8 0.9783 98.6 97.1 0.9704
50 98.8 0.9754 97.9 97.2 0.9671
60 98.8 0.9739 98.5 96.3 0.9661

Table 3
Test results for TEs.

T. samples (s) Accuracy (%) F-measure Precision (%) Recall (%) Phi-coefficient

10 99.5 0.9935 99.2 99.5 0.9894
20 99.4 0.9913 99.1 99.2 0.9871
30 99.5 0.9914 99.5 98.8 0.9878
40 99.6 0.9930 99.8 98.8 0.9904
50 99.6 0.9913 99.9 98.4 0.9885
60 99.6 0.9909 99.6 98.6 0.9882

4. Results of model selection, validation and optimization

We compared three different ML models using the techniques for
optimization offered by BigML. These are centred on ML metrics such as
those described in Section 3.5. The best model obtained from this broad
comparison was studied in detail for specific metrics in our scenario,
such as the amount of bytes lost or the time until crypto-ransomware
detection.

In this section we present the results from each of these steps.

4.1. ML model selection

We considered six values of interval T, from 10 to 60 s. For each
value we prepared the training and testing dataset, trained each of these
ML models and computed the classification metrics. These datasets
contain a balanced representation of both classes (‘infected’ and ‘not-
infected’) because they are an 80%–20% random split of a dataset
containing 50 h of ransomware traffic and 50 h of benign applications
traffic.

The metrics computed for the six values of T are shown in Table 2
(Decision Trees), Table 3 (Tree Ensembles) and Table 4 (Neural Net-
works). As T increases, the results are expected to improve because
a larger number of features allows the model to learn more complex
relations. However, using large values of T causes the model to require
more time to raise an alarm, allowing the crypto-ransomware to en-
crypt more files before it is detected. This effect on the detection time
is studied in-depth in Section 4.2, after the best model is selected.

All the models achieve high accuracy results (98% or higher).
However, the simpler the model is, the less it takes advantage of the
larger number of features. Using NNs, both accuracy and precision
increase as T becomes larger (larger number of features). Using DTs,
both accuracy and precision decrease when the temporal window, T,
increases.

Fig. 8 plots the six metrics for the three models, using T = 20 s.
To facilitate the comparison, for NNs we plotted only the results with
three hidden layers, which offers better results than when using 1 or
2 layers. In Section 4.2, we present a detailed comparison of the other
metrics for this model with a different number of hidden layers.

DTs provide the worst results for all the metrics. The difference
between DTs and the other models is maintained for other values of
T – it is larger for the case of T = 60 s (Table 2). DTs cannot take
advantage of all the features offered, unlike TEs and NNs. Therefore,
we discard the DT model and focus on TEs and NNs.

NNs provide the best results, with values greater than 99% for all
9

the metrics. Moreover, the phi-coefficient for TEs has the lowest value
Fig. 8. Comparison of metrics for DT, TE, and NN with T = 20 s.

in the set (98.7%). Although the differences in the NN case are not as
large as in the case of DTs, NNs obtain higher values for all the metrics
for most of the T values studied (10 to 60 s). In Section 4.2, we discuss
the optimization of the NN model studying the effect of the changes in
parameter T and the number of hidden layers on the false positive rate
and the accuracy results on the unseen crypto-ransomware binaries.

4.2. Neural network model optimization

NNs provide the best results among the models studied; however,
they have scope for optimization. We evaluated the true positive and
false negative rates using the time until ransomware is detected (true
positive) in the ‘infected’ dataset. We computed the average and max-
imum time required by the model to raise an alarm for the 150
crypto-ransomware traffic traces available. Each model requires to wait
for at least T seconds to raise an alarm because T is the time needed
to build a single sample. All NN models in this section can detect
all the crypto-ransomware binaries in our whole dataset – this
includes those binaries not used in the training phase (unseen malware)
– however, different configurations require different time to detection.
Table 5 lists the results for NNs with one, two, and three hidden layers
with different configurations of the time window.

The last column in Table 5 presents the maximum time required to
detect a crypto-ransomware in the ‘unseen’ dataset. These strains were
not used in the training phase, as explained in Section 3. This is the
most significant result because it reveals the robustness of the system
to the ever-changing environment of malware. All the models detect
the unseen crypto-ransomware in the time required to build a sample
(T seconds) except for two scenarios: (a) when T = 10 s, there are some
strains that require two consecutive samples (20 s) to be detected, and
(b) for the 1-hidden layer model and T = 60 s, two samples may be
required, raising the maximum detection time to 120 s.

The maximum detection time is also high for the training dataset
when using the 1 or 2 hidden layer models and 𝑇 > 10 s. The maximum
detection time is 160 s when using 2 hidden layers and T = 20 s and
it is larger than 15 min (1050 s) when using only 1 hidden layer and
T = 50 s. This means that some ransomware strains can run for more
han 15 min, encrypting user files, before they are detected. Taking into
ccount only the tool effectiveness to detect ransomware in action we
hould select a 3-hidden layers model or a 1-hidden layer model but the
ast case only using T = 10 s. The 3-hidden layers model is complex but
as an adequate behaviour for any value of T between 10 and 60 s. The
-hidden layer model is simpler, but it can take too long to detect some
ansomware families, so it should only be used with T = 10 s.

However, we cannot base model optimization only on detection
effectiveness. The system will not be usable if it frequently raises an

Expert Systems With Applications 209 (2022) 118299E. Berrueta et al.

a
l
u
i
t
e
p
c

Table 4
Test results for NNs with 1, 2 and 3 hidden layers.
No. of hidden layers T. samples (s) Accuracy (%) F-measure Precision (%) Recall (%) Phi-coefficient

1

10 99.1 0.9886 99.0 98.7 0.9813
20 99.1 0.9868 99.2 98.2 0.9804
30 98.8 0.9789 98.9 96.9 0.9703
40 99.2 0.9854 98.7 98.4 0.9810
50 99.3 0.9860 99.3 97.9 0.9813
60 99.5 0.9896 99.4 98.6 0.9865

2

10 99.1 0.9887 98.9 98.8 0.9816
20 99.3 0.9888 99.2 98.6 0.9833
30 98.9 0.9807 98.4 97.8 0.9726
40 99.2 0.9849 98.6 98.4 0.9793
50 99.3 0.9853 99.5 97.6 0.9804
60 99.6 0.9910 99.1 99.1 0.9882

3

10 99.7 0.9959 99.7 99.4 0.9933
20 99.8 0.9966 99.5 99.8 0.9950
30 99.8 0.9971 99.6 99.8 0.9959
40 99.8 0.9962 99.6 99.7 0.9948
50 99.9 0.9974 99.7 99.7 0.9965
60 99.9 0.9987 99.7 100 0.9983
Table 5
Validation results for NNs using training binaries or unseen ransomware.
Hidden layers T (s) False positives Average/max detection

time (s) (training binaries)
Maximum time to detect
any unseen binary (s)

Number % Average number of workdays
until a false positive occurs

1

10 207 0.0230 1.49 10.88/30 20
20 25 0.0057 12.3 22.62/260 20
30 9 0.0031 33.6 34.13/630 30
40 6 0.0027 51.4 41.9/280 40
50 4 0.0023 75.4 52.46/1050 50
60 3 0.0021 99.2 62.17/540 120

2

10 386 0.0430 0.8 10.68/40 20
20 76 0.0174 4 21.37/160 20
30 26 0.0090 11.5 31.4/180 30
40 11 0.0051 27.2 42.5/240 40
50 9 0.0049 34.7 50.7/700 50
60 6 0.0042 49.6 61.3/300 60

3

10 76 0.0080 4.07 10.2/20 20
20 35 0.0080 8.84 20.2/40 20
30 12 0.0041 25.8 30.2/60 30
40 7 0.0032 43.8 40/40 40
50 7 0.0040 43.8 50/50 50
60 4 0.0028 74.8 60/60 60
alarm when benign applications are accessing shared documents. For
the evaluation of these false positives, we used the real user samples
labelled as ‘not infected’. They contain more than 10 months of 8-
h working days of traffic. We counted the number of T-seconds-long
samples mistakenly classified as ‘infected’ for each value of T. Fur-
thermore, we calculated the average number of 8-hour working days
before raising a false alarm, which has an inverse relationship with
the false positive rate. The results of false positives are in the third,
fourth and fifth column in Table 5. The number of false positives gets
reduced when increasing the number of layers or the time window T.
This reduction results in larger periods of time before a false alarm is
raised when only benign applications are used.

Looking at the average number of days until a false positive, the
1-hidden layer model obtains the best results for all configurations
except for T = 10 s. When T = 10 s, the 1-hidden layer model offers
n average of 1.49 days between false alarms; meanwhile, the 3-hidden
ayer model increases this value to 4.07 days. The best result is obtained
sing T = 60 s and 1 hidden layer, where only one false positive
s expected every 99 8-h working days. However, this behaviour is
he result of also not detecting some crypto-ransomware strains early
nough. The 1-hidden layer model is conservative in raising an alarm,
roviding good results of false positive rate at the expense of late
rypto-ransomware detections. We had established that this model
10
shows good detection results only when T = 10 s. However, for such a
low value of T the 1-hidden layer model does not provide the lowest
false positive rate, but it is surpassed by the 3-hidden layers model.
Therefore, we discard the 1-hidden layer model as the best option.

The 3-hidden layers model provides a false positive rate lower than
the 2-hidden layers model for any configuration and it also shows the
best behaviour when T = 10 s. This means that for low T, the 1-
hidden layer model shows low maximum detection times, but it does
not offer the best result in false positive rate. The best result is offered
by the 3-hidden layers model, which also offered good detection results.
Although the 3-hidden layers model requires more time for training
and classifying each sample, the model is trained only once after its
installation; therefore, the time utilized for training is not determinant.
The NN receives one sample every T seconds, and NN models using
hundreds of neurons can be evaluated in sub-second time on a single-
core CPU; therefore, the classification time is also not a cause of
concern.

Once we have selected the model with best results, we should select
the best value of T. No detection can happen before a single sample is
read, which requires the traffic in a time window T. The 3-hidden layers
model offers detection in one time window except for T = 10 s that
requires a second sample for some crypto-ransomware strains, taking
at most 20 s to detect the crypto-ransomware.

Expert Systems With Applications 209 (2022) 118299E. Berrueta et al.

s
C
p
l
6
t
c
n
a
0
o

o
a
r
a
t
t

e
i
o
‘
1
w
o

o
o
5
2
S
h
S
M

.

Fig. 9. Data in MBs lost for each unseen binary for different configurations of T
(3-hidden layers NN).

Fig. 9 shows the number of bytes encrypted for each unseen binary
before successful detection using the 3-hidden-layer model. Owing
to the differences between the encryption processes of different ran-
somware binaries, the number of bytes encrypted can vary greatly
among them. Some ransomware strains encrypt files in the alphabetic
order, whereas others do it according to size (Berrueta et al., 2020);
this is the reason for the differences in the number of bytes encrypted.

For T = 60 s, the average number of bytes lost for unseen ran-
omware binaries is 202 MB, whereas for T = 10 s, it reduces to 42 MB.
rypto-ransomware such as BitPaymer are considerable insensitive to
arameter T, whereas others such as Stop-1 can vary from encrypting
ess than 100 MB of data when T = 10 s to encrypting more than

times this value when T increases by 6 times (T = 60 s). One of
he objectives of the tool presented in this paper is quick detection of
rypto-ransomware; therefore, we recommend that parameter T should
ot be greater than 30 s. This allows unseen binaries to encrypt an
verage of 99 MB of data. By using T = 30 s, a false positive rate of
.0041% and one expected false alarm only after 25 working days are
bserved.

Depending on the effect of the alarm on the user, shorter values
f T can be configured. If the alarm causes only a warning, it may be
cceptable to have one false positive in 4 days (T = 10 s). This would
esult in less data loss in case of ransomware infection. If the alarm is
nnoying to the user, larger values must be used for T. Parameter T is
unable through the tool or network administrator, and it depends on
he network, user, and file server characteristics.

Once the time-window length T is decided we can evaluate differ-
nt options in the process of sliding the time window to create the
nput samples from the network traffic. Table 6 shows the number
f megabytes lost for each of the crypto-ransomware binaries in the

unseen’ set. Different values of the sliding step were evaluated, from
s (the minimum interval to extract the features) to 30 s (the selected
indow length). Table 7 contains the number of false positives for each
f these configurations.

The data in Table 6 does not show clear evidence about the benefits
f shortening the window sliding step in terms of reducing the amount
f data lost before detection. The average value of megabytes lost for
s of sliding window step is smaller than for 30 s, but less than

0%. Analysing the values for each unseen binary, all except Stop-1,
odinokibi-1 and RansomX encrypt less data for shorter sliding steps,
owever, the differences are not very significant. The only exception is
odinokibi-3, that for less than 10 s window sliding step encrypts 0.27
B before detection while for 20 s step it encrypts more than 50 MB.
11
Table 6
Megabytes of data lost before detection of each unseen binary for different sliding steps

Unseen binary 1 s (MB) 5 s (MB) 10 s (MB) 20 s (MB) 30 s (MB)

Shade 75 40 82 33 87
Sodinokibi-1 167 129 129 129 129
Stop-1 351 365 398 478 328
Sodinokibi-2 142 164 188 188 146
Stop-2 60 59 68 68 68
Sodinokibi-3 0.27 0.27 0.27 54 54
Phobos 12 13 13 14 41
BitPaymer 33 33 51 33 53
RansomX 240 365 406 423 36
Shaofao 44 36 46 51 46

Average (MB) 112 80 138 147 99

Table 7
Number of false positives for 10 months of 8-h working days and each sliding step.

1 s 5 s 10 s 20 s 30 s

False positives 896 166 49 18 12

In terms of false positives, the data in Table 7 shows a detriment
when the sliding step is shortened. When the sliding step is set to 30 s
there are 12 false positives in 2477 h of not infected traffic, or an
equivalent expected alarm every 25 working days. However, a sliding
step set to 1 s results in almost 3 alarms every day. As we have already
discussed, a high number of false alarms could disturb the users and
result in the detection tool being deactivated, thus we conclude that the
detriment in shortening the sliding step overcomes the slight benefits.

4.3. Model validation using different file-sharing protocols

The training, optimization and evaluation process has been carried
out using SMBv2 traffic. It is unencrypted traffic, but we have used the
features described in Section 3.3, which do not require protocol analy-
sis. The features can be extracted from encrypted traffic such as SMBv3
or from different file-sharing protocols such as NFS (encrypted or not)
without protocol analysis. In this section we evaluate the hypothesis
that all these protocols behave in a similar manner. They all translate
operating system file access primitives into network protocol messages,
and they should create very similar traffic patterns. This behaviour
should allow the trained model to detect crypto-ransomware activity,
even in scenarios using a different file-sharing network protocol.

To test our hypothesis we have run the ‘unseen’ binaries using
SMBv3 and NFS as the file-sharing protocol. We have set a new scenario
using a Windows 10 client and an Ubuntu file server sharing the same
directory as the one used for training the model. Windows 10 was
the required operating system in the client to obtain support for the
SMBv3 and NFS configurations, however, the result was that some of
the unseen binaries could not run in this environment. Those inactive
binaries are marked in Table 8. Each crypto-ransomware binary was
run three times: once sharing the directory using SMBv2, another one
using SMBv3, and the last one using NFS.

All these binaries, in all file-sharing protocol scenarios, were suc-
cessfully detected using the 3-layer neural network trained using
SMBv2 samples. For each binary and protocol, we calculated the detec-
tion time since the beginning of activity. For comparing the results, the
time to detection is not very relevant because each crypto-ransomware
variant could wait an unknown time from its execution until beginning
the encryption of the shared volume. We also calculated the amount of
data read and written until being detected by the tool (see Table 8). In
the training and optimization experiments we calculated the amount of
data encrypted by ransomware, thanks to SMBv2 being not-encrypted.
In the SMBv3 case the protocol messages are encrypted and from the
network traffic we cannot identify the different disk access actions. We
carried an estimation of the amount of lost data based on the amount

Expert Systems With Applications 209 (2022) 118299E. Berrueta et al.
Table 8
Time for detection and data read and written by each binary and file-sharing protocol before detection.

Time for detection (s) MB read before detection MB written before detection

SMBv2 SMBv3 NFS SMBv2 SMBv3 NFS SMBv2 SMBv3 NFS

Shade 226 N/A N/A 88.7 N/A N/A 88.8 N/A N/A
Sodinokibi-1 227 N/A N/A 101.5 N/A N/A 16.9 N/A N/A
Stop-1 1265 1265 1046 15.1 31.1 40.7 13.3 31.1 20
Sodinokibi-2 245 N/A N/A 44.2 N/A N/A 44.1 N/A N/A
Stop-2 916 N/A N/A 55.5 N/A N/A 55.4 N/A N/A
Sodinokibi-3 167 N/A N/A 202.5 N/A N/A 165.4 N/A N/A
bitPaymer 1029 1113 621 128 108 17.6 126.4 101.2 15.5
Phobos 713 752 694 20.2 16 20.8 24.9 20.1 15.7
RansomX 1028 823 716 88.5 21.2 35.4 56.1 13 35.5
Shaofao 694 840 691 16.9 45.7 18.8 21.3 55.8 20.4

Average 76.1 48.9 29.5 61.2 48.1 25.6
of bytes read and written at the TCP layer. We used the same procedure
for NFS traffic. Table 8 shows, for each crypto-ransomware binary and
protocol, the time before detection, and the bytes read and written up
to that time.

The read data can be considered as the original file data read and
encrypted by the ransomware, and eventually lost. However, sometimes
the ransomware reads the files a second time, increasing this count
beyond the real amount of lost data. Some binaries do not read the
whole file but only a fraction of it and encrypt only that fraction. The
read data before detection is therefore an estimation of the lost data
and we cannot generalize it as any kind of bound.

The data written by each variant can be understood as the original
data the ransomware has overwritten. As for the case of read data,
ransomware frequently writes additional files (e.g., containing payment
instructions), actions that will cause more written bytes than the real
lost ones. Some ransomware binaries compress the data or only encrypt
a fraction of the file content, therefore writing a smaller amount of
bytes than those read. The written data is also neither a higher nor
a lower bound but an estimation of the amount of lost data.

Taking into account all these aspects on the evaluation of lost data
and witnessing the results, the model detected all crypto-ransomware
variants in the three scenarios: using SMBv2, SMBv3, or NFS; with a
similar precision to using SMBv2 (the training scenario). This is very
relevant because the model was never trained using SMBv3 or NFS
traffic, but it generalized correctly the traffic patterns from the samples
obtained from SMBv2 traffic. In SMBv2 and SMBv3 the amount of data
lost is similar (around 50 MB), while in the NFS scenario the amount
of read and written data is considerably smaller. Analysing the traffic
traces from a crypto-ransomware family and all file-sharing protocols,
we noticed that the read and write speed was lower using the NFS
protocol, which makes sense because the client is a Windows machine
and for mixed environments (Linux and Windows) the recommended
protocol is SMB (NetGear, 2016). This lower speed allowed the model
to detect the activity before a greater number of files were lost.

In conclusion, the neural network model using T = 30 s can detect
ransomware binaries in SMBv2, SMBv3 and NFS scenarios, even when
being trained using only traffic from the first one.

5. Discussion and comparison with previous research

Deep learning and other ML models are popular techniques in
the literature on malware detection, including ransomware detection,
therefore the methodological approach taken in this article is not pre-
sented as novel. However, the file-sharing scenario we have described
has not been significantly considered in the literature of ransomware
detection. Network shared volumes are common practice in the corpo-
rate environment, but the literature on ransomware countermeasures
has not deeply studied the advantages of detection based on file-sharing
traffic. To the best of our knowledge, the work on (Morato et al.,
2018) is the only one that takes a similar approach, but it requires
12

unencrypted SMBv2 traffic, which is accepted but not required in this
article. Some of the advantages present in this scenario are also present
for detection tools based on the analysis of network (not file-sharing)
traffic, while some others are the result of analysing file-sharing traffic.

We have organized this discussion first on the advantages of an
analysis tool based on file-sharing traffic, compared to other tools based
on traffic. Following this discussion, we compare effectiveness and
limitations between the deep learning model presented in this article
and the results on the previous literature. To conclude the section, we
discuss the limitations and our perspectives of future work.

5.1. Advantages and caveats in a passive file-sharing traffic analysis sce-
nario

Antivirus software is most often installed on the users’ host. Crypto-
ransomware detection tools are a specific case of antivirus tool, there-
fore they work in a similar manner (see for example Continella et al.,
2016; Kharraz et al., 2016). In a file-sharing environment, antivirus or
crypto-ransomware detection tools can also be installed at the server,
where they can monitor all files written and detect encrypted content.
However, in a file-sharing scenario, a large amount of information
about user actions can also be obtained from network traffic, which
offers the following advantages:

• Unintrusive to the client: Antivirus software running at the client
implies being potentially intrusive to the user and consuming
computer resources that could affect computer responsiveness.
However, local files tend also not to be the critical documents.
They are the operating system and main programs files, which in
most occasions offer only a remote desktop client environment.
Running in an independent hardware (the network monitor), our
solution does not affect computer responsiveness.

• Unintrusive to the server: The deployment of a detection tool at
the server requires resources at the server and any CPU impact
or disk access at the server can translate into performance degra-
dation for all the clients. Again, this problem does not exist for a
network-deployed monitor.

• Unintrusive to the traffic: Firewall appliances are deployed in-
path, meaning that all traffic analysis adds a packet processing
time and in high bit rate traffic scenarios can affect file-sharing
protocol performance. We suggest deploying the analysis tool off-
path, monitoring a copy of the traffic. To block the traffic from
an infected computer, the tool can program access rules in a
software defined network control plane, in a firewall existing in-
path (without requiring the firewall to run the analysis software),
or in the file server, removing the user access privileges.

• Easy updates: A tool, such as the one described in this article,
deployed off-path, is a single point to manage and its updates
do not affect file-sharing service, compared to deploying it at the
clients or the server.

• Malware resistance: A tool deployed off-path is a single point

to manage, and it can be easily protected from attacks that

Expert Systems With Applications 209 (2022) 118299E. Berrueta et al.

S
v
c
n
b
&
e
f
a

I
m
s
(
t
s
d

t
a
c
l

b
c
d
s
D
s
p
a

5

t
t
m
a

t
l
s
2
T
b
o
w
t
w
b
a
p

s
m
t

could escalate privileges and deactivate the security software.
The network monitor does not require real network access, but
only monitoring a copy of the traffic, therefore it cannot receive
network attacks. In case of requiring access to a network control
plane, it should be connected only to the control network, not be-
ing accessible from the production network. It also does not have
a console user, therefore it is not susceptible to social-engineering
attacks.

ome previous ransomware detection tools in the literature take ad-
antage of information obtained from network traffic. Most of them
annot take advantage of above-mentioned characteristics because they
ot only use information from network traffic but they also require to
e installed at the hosts to capture other fundamental metrics (Hasan
Rahman, 2017; Lu et al., 2017). A shorter list of the literature takes

xclusively information from network traffic. They are not based on
ile-sharing traffic but on DNS traffic or TCP connections to certain IP
ddresses (Ahmadian et al., 2015; Quinkert et al., 2018).

In Cabaj and Mazurczyk (2016) the tool blocks the access to certain
P addresses after analysing the DNS requests. The malicious addresses
ust be in a blacklist that should be updated as soon as new ran-

omware C&C servers appear. The use of domain generation algorithms
DGA) by some crypto-ransomware strains makes this task difficult, and
he tool cannot detect ransomware that does not need to contact a C&C
erver. Thus, the tool presented in Cabaj and Mazurczyk (2016) cannot
etect as many strains as the tool presented in this article.

In Ahmadian et al. (2015) the authors use DNS traffic to recognize
he use of randomly generated domain names to locate the command
nd control (C&C) host. This detection technique cannot be applied to
rypto-ransomware strains that do not use a DGA and therefore it is
ess generic than the model presented in this article.

The authors of Almashhadani et al. (2019) analysed the network
ehaviour of ransomware Locky. The tool’s efficiency in detecting other
rypto-ransomware strains has not been verified, and the tool could not
etect ransomware that does not contact a C&C server. They selected
ome TCP-level features, in addition to DNS features (domain names or
NS request failures). The TCP features are for example the number of

egments with the RST flag active or the number of hypertext transfer
rotocol (HTTP) POST requests sent by the user. Although they present
thorough behavioural analysis, it is focused on the ransomware Locky.

.2. Comparison of effectiveness

When comparing crypto-ransomware detection proposals there are
hree aspects we must take into account and that limit the comparison:
he ransomware strains analysed, the metrics used to evaluate perfor-
ance, and the reproducibility of each technique. We analyse these

spects in the following discussion.
In this article we have presented a detection technique applicable

o any crypto-ransomware. In comparison, there is a subset of the
iterature that describes ransomware detection techniques targeting a
ingle ransomware strain (Ahmadian & Shahriari, 2016; Alam et al.,
018; Feng et al., 2017; Kara & Aydos, 2022; Quinkert et al., 2018).
hey base the detection on searching for some special behaviour shown
y the selected strain and therefore they are hardly generalizable to
ther ransomware families. Those techniques have not been compared
ith other families and in most cases they cannot be applied because

he mechanisms they search for are not present in different strains. We
ill not elaborate any further in the comparison with these proposals
ecause they do not apply to a realistic production environment where
ny ransomware strain can infect a host and it is a well documented
roblem (McIntosh et al., 2021).

The rest of the literature takes a set of ransomware binaries from
ome repositories. They can be organized in strains or families (Ah-
adian et al., 2015; Scaife et al., 2016; Sgandurra et al., 2016) or
13

hey can be a large set that results from searching in a database using
ransomware-related keywords (Chen et al., 2017; Kharraz et al., 2016;
Lu et al., 2017). In recent years we have witnessed an important
increment in new ransomware appearances. Depending on the age of
the ransomware detection proposal, it has been tested with a different
set of strains. Algorithms described in decade-old papers were designed
to detect ransomware binaries that we cannot run nowadays because
their C&C servers are down or the DNS names they try to resolve are
blocked. Comparison with these papers is problematic because their
results cannot be generalized to new ransomware strains and new
methods cannot be tested with the families present at their time.

The metrics used to evaluate performance of the detection al-
gorithm are usually centred on the capability to detect the crypto-
ransomware and on its erroneous classification of benign applications
as ransomware. These two metrics relate to the true positives and the
false positives in a binary classification problem. Crypto-ransomware
detection can be measured on the basis of whether a ransomware
binary is recognized as malware or not; it can also be measured using
the time the algorithm requires to classify it as malware, or it can
be measured as the amount of data lost before detection. Some of
these metrics depend on the environment (computing power, disk files
distributions, simultaneous user actions) and there is no consensus
on a single metric whose value could be compared in the same cir-
cumstances in future works. A similar problem arises when discussing
false positive classification, where critical parameters are for example
the type or number of benign applications being run, or the user
activity pattern. Due to the different metric definitions, any objective
comparison of numeric results is not reliable and we will have to
consider what each metric is really measuring and in which context.

Finally, some of these handicaps can be solved if previous proposals
could be tested against new data. This requires a clear definition of the
algorithms, making their implementation reproducible. A second option
is publishing all the data used, so new algorithms can be compared in
the same scenarios. It is not the objective of this section to enumerate
the literature on crypto-ransomware detection which lacks comparabil-
ity due to unclear algorithm definitions or unpublished data. We just
tried to make our best contribution to facilitate future comparisons by
making available both the dataset used in this article and the neural
network that we obtained after training (Berrueta et al., 2021).

Taking all these aspects into account, we proceed to discuss the
results in previous papers having a number of ransomware strains
similar to those in this study. The tool we have described requires only
a single 30-seconds sample from network traffic to detect more than
99% of the crypto-ransomware samples we tested (150 traffic traces
from more than 30 strains appearing in a period of five years). In the
remaining cases (less than 20%), 2 samples (60 s) are required. We
have divided the existing tools into two groups depending on where
they have to be installed.

5.2.1. Locally installed tools
These tools must be installed in each host that has access to the

shared files to provide effective protection. They need some features
that can only be obtained from the local machine. Therefore, all of
them require a higher management burden than a single monitoring
probe and present some impact on end-host performance.

Scaife et al. (2016) measured disk-access actions from each running
process. Results of testing the described tool using ransomware binaries
from 24 different strains revealed 100% detection rate and one in 30
benign applications causing a false positive (applications selected due
to their similarities with ransomware behaviour). On average, 10 files
were encrypted before malware detection, although it depends on the
file-size and on the ransomware strain. In the case of our tool, 51 files
were lost on average in a worst-case scenario of 10 unseen ransomware
binaries. Our ransomware dataset was collected between 2015 and
2020, whereas the tool in Scaife et al. (2016) was trained and evaluated

using ransomware binaries that appeared up to 2016, and it has not

Expert Systems With Applications 209 (2022) 118299E. Berrueta et al.
been tested with more recent ransomware strains such as WannaCry,
notPetya, or Phobos.

Sgandurra et al. (2016) developed an ML-based tool using a selected
set of features obtained either statically from the binary program or dy-
namically while it is running. They tested their tool using ransomware
binaries from 11 different strains that appeared before 2016, and 942
manually executed user applications. They achieved a detection rate of
96.3% and false positive rate of 1.6%. We have presented a solution
that improves the results in terms of detection and false positive rate,
using a more modern set of ransomware strains and an unrestricted set
of benign applications run from an uncontrolled population.

Zuhair et al. (2020) proposed a hybrid ML model that combined
Naive Bayes and Decision Trees, and used 10 static and 14 dynamic
features. The model classified unseen ransomware samples into their
ancestral families. The authors used 35.000 ransomware versions from
14 ransomware strains, adding 500 versions of malware and 500 benign
applications, obtaining 97% accuracy in the classification. Although
they used a large corpus of malware binary versions, our tool improves
the results in terms of accuracy using a higher number of ransomware
strains for evaluation.

Mehnaz et al. (2018) described a software solution named RW-
Guard. The authors trained a Random Forest classifier based on the
malware disk access operations, and adding the monitoring of deployed
decoy files they achieved a detection rate of 100% and a false positive
rate of 0.9%. The proposal can detect ransomware before the encryp-
tion of 10 files. This solution, however, introduces significant latency
in I/O operations and overloads the user machine. With our tool, the
results concerning false positive rate (0.004%) were improved, and
there was no added latency.

Continella et al. (2016) computed the number of different types of
file access operations in time intervals of various sizes. They created
a multi-tier structure of sets of Random Forest classifiers, using each
set to observe the data from a different scale. They added file recovery
capabilities by maintaining a copy of every file being edited while the
classifier is validating the operations on it. The detection and false
positive rates were 97.7% and 0.038% respectively. Similar to Scaife
et al. (2016), the ransomware dataset covered only ransomware strains
that appeared until 2016. We improved the detection results with a
more modern experimental set. We can also offer file recovery using
the network-based analysis probe but only in case of the file-sharing
protocol being not encrypted. Non-encrypted protocols are for example
versions 1 and 2 of SMB, and we showed a proof-of-concept of the
file-recovery feature in a previous publication (Berrueta et al., 2018).

Moussaileb et al. (2018) monitored the file system traversal paths
and velocity of the analysed programs. These features were the input
to multiple classifiers (k-nearest neighbours, DTs and random forests)
and the final output was the result of a majority vote among the
classifiers. They obtained a detection rate of 99.35% and a false positive
rate of less than 1%. The detection was based on ransomware file
traversal behaviour that could easily change in future strains, therefore
becoming undetectable. In comparison, our trained ML model detected
all the modern ransomware strains that were not used in the training
phase and is not restricted to any specific file-traversal behaviour; it
is based on the file reading and writing ransomware activity, which is
unavoidable to encrypt the files.

Ramesh and Menen (2020) monitored the modification of the en-
tropy of file contents, the use of system resources, the implementation
of persistence to system reboots and the possibility of lateral move-
ments of the malware. These behaviours were used in a finite state
machine (FSM) to observe whether the malware actions took the FSM
to a state matching an infection or not. The authors evaluated their
model using 1500 benign apps and 475 ransomware binaries, reaching
99.5% accuracy. However, there were 9 non-detected binaries, while
our model could detect all ransomware binaries, either used in the
14

training phase or not.
Arabo et al. (2020) monitored CPU, RAM usage and disk-access
operations. They combined weighted average computations on the time
series of some of these metrics with a machine learning technique
for those where it was more suitable. They did not describe the ML
technique used, and they analysed only 7 ransomware binaries. They
did not perform zero-day evaluation of the solution (i.e., the evaluation
using ransomware unseen during the training process), while we clearly
described the learning phase in our model, using ten times the number
of ransomware binaries, and we validated the model using 10 unseen
binaries from 7 different families.

Al-rimy et al. (2019) analysed the dynamic call to library functions
from 15 ransomware families before any call to cryptography-related
procedures (pre-encryption phase). After pre-processing the extracted
features, the authors trained 7 different ML techniques and used a
majority voting strategy to obtain the classification. The system reached
a 91.9% accuracy with 1.85% of false positive rate. We improved both
figures, validating the results with a larger training set of ransomware
families and unseen families.

Zhang et al. (2020) extracted the instruction machine codes or
operation codes (opcodes) by disassembling the program file under
analysis. They created features based on sequences of the opcodes,
and used a combination of self-attention convolutional neural networks
and bi-directional self-attention network to classify these sequences.
They achieved an 89.5% accuracy, 87.5% precision, 87.6% recall and
87.3% F1-measure. Their main limitation is that they performed static
analysis of the binaries, which is prone to false negatives, while our
architecture is based on dynamic analysis. They also used only 8
different ransomware families in their study.

Ahmed et al. (2021) used 292 ransomware binaries (both crypto-
ransomware and locker-ransomwares) from 67 ransomware families.
They analysed the system events generated by the programs; events
such as reading or writing files, launching processes or loading and
unloading dynamic libraries. They detected high correlation between
some of these events, and used them to train a Support Vector Machine
(SVM) and a Bidirectional Encoder Representation for Transformers
(BERT). They obtained a classification accuracy of 99.52%, precision
99.41%, recall 99.63%, and F1-measure 99.52%. Their main limitations
are the resource consumption in the user machine, and its tendency to
cause false positives. Our solution does not consume any resources at
the users’ computers, and using neural networks with 3 hidden layers
we obtain better results in all four metrics.

Roy and Chen (2020) developed a solution based on events captured
in hosts. Analysing them when there was a ransomware in action and
when there was not, they could detect abnormal events that would
indicate the presence of ransomware. They compared five deep learning
models and achieved 99.87% detection accuracy using a BiLSTM-FC
(Bi-directional Long Short Term Memory with a Fully Connected layer)
and 17 different ransomware strains, obtaining 0 false positives. No
experiments with unseen samples were performed in this study; there-
fore, the solution could have problems in detecting ransomware strains
that are not present in the training phase. They overcame the resources’
consumption problem by sending the logs to a server for the analysis.

5.2.2. Network based tools
These tools do not require their installation in the user’s machine

because they do not need any information monitored locally. The
main advantages compared to the locally installed group is that they
do not consume resources in the user’s machine, and they cannot be
deactivated by ransomware that escalates privileges in the infected
host. However, they do not have access to local host information, which
can hamper their capabilities.

Chadha and Kumar (2017) detected whether the names in DNS
requests were generated by a domain generation algorithm or not. They
compared supervised and unsupervised ML algorithms, obtaining an

optimum configuration with a detection rate of 85% and false positive

Expert Systems With Applications 209 (2022) 118299E. Berrueta et al.

t
&

rate less than 10%. They trained the algorithms with 101 domain
names from 3 ransomware variants and evaluated them with 30 domain
names not used in the training phase (zero-day scenario). Ransomware
detection based on DNS traffic fails for ransomware strains that do not
need to contact an external server or they establish the connection after
the encryption process, such as CTBLocker, DMALocker or Crysis.

Almashhadani et al. (2019), similar to Chadha and Kumar (2017),
detected ransomware by analysing the DNS requests. They added extra
information from HTTP and TCP protocols, and based the classification
process on per-packet and per-stream measures. They compared the
results from different ML algorithms, including DTs and TEs. They
achieved a detection rate of 97.8% and a false positive rate of 0.04%.
Compared to Chadha and Kumar (2017) the authors added some extra
characteristics, however, they were extracted from the traffic between
the ransomware and its C&C server. Thus it fails for ransomware
families that do not need to contact external servers.

Morato et al. (2018) described a tool that is most similar to the
one presented in this paper. It detects crypto-ransomware by analysing
traffic from SMBv2. It achieves 100% detection rate and 1 out of
10 billion false positives. However, owing to the features it extracts
from the traffic, it is not applicable to an SMBv3 scenario, wherein
the file-access commands are encrypted. We have generalized the sce-
nario with a new tool, capable of crypto-ransomware detection in
encrypted file-sharing scenarios or using different file sharing protocols.
The encryption, or protocol-agnostic restriction, limits the available
information in network traffic, causing the false positive rate to increase
compared to Morato et al. (2018). However, the tool can still detect the
unseen crypto-ransomware binaries downloaded from Berrueta et al.
(2020), losing an average of only 37 MB of data before detection.

5.3. Limitations and future work

We have shown that, compared to relevant papers in the literature,
the detection technique presented in this paper obtains similar or better
ransomware detection results than those previously achieved. Also, our
tool deployment scenario, based on file-sharing network traffic analysis,
is clearly advantageous from a management perspective, avoiding any
slow down in user host performance. However, it is not a fair compar-
ison if we do not highlight the caveats still present in our proposal.
This is the task we undertake in this section, offering as much a critical
analysis as possible.

We have described a crypto-ransomware detection technique based
on file-sharing traffic from Microsoft Windows desktop (or laptop)
computers that are the most frequent potential target of ransomware
infections. We did not consider mobile operating systems. We believe
a file-sharing scenario is unlikely for these systems.

The architecture described is only applicable to scenarios where the
important files are stored in a file server. This is the common scenario
for an enterprise deployment, where we have placed our focus. It is a
less useful tool in the home environment.

The detection algorithm was evaluated using 33 crypto-ransomware
families, but file-less ransomware cases could not be included because
we could not reproduce those infection scenarios. However, as long as
their objective is locking access to files, they are expected to present
a behaviour similar to the one described for the ransomware families
considered in this work.

Only crypto-ransomware is being detected, and not other descen-
dants of a generic ransomware category, such as malware doing only
data exfiltration.

We have described a static solution, trained using crypto-
ransomware strains from 2015 up to 2020 that we expect to be valid
when new families appear, however, nothing in the analysis supports
this affirmation. We pretend to create better adaptive training method-
ologies where new ransomware strains can be incorporated into the ML
15

model and evaluate the improvement or deterioration of the results.
6. Conclusions

In this paper, we have established a deep learning model capable of
detecting crypto-ransomware while the malware is reading and writing
files in a network-shared volume. No previous study has targeted this
scenario, which is a very common scenario in corporate networks. The
input set of features to the model described not only the intensity of file
access activity, but also the number of files accessed, through a novel
feature named as the number of short commands. These commands are
recognized in encrypted traffic and in both SMB and NFS traffic by
the exchanged sequence of small packets. They serve as a differentiator
between crypto-ransomware and benign application activity.

We validated the tool using more than 70 crypto-ransomware bi-
naries acting in a file-sharing scenario using encrypted or unencrypted
protocols. The tool works with a copy of the traffic obtained from a
network switch; therefore, it does not affect user activity.

We explained the feature extraction and sample reduction processes
before the selection of the best ML model. The comparison between
decision trees, tree ensembles, and neural networks reveals that neural
networks provide the best results using 3 hidden layers of neurons. The
validation reveals that the model has a false positive rate of 0.004%
with more than 2400 h of real user traffic. It can detect all ransomware
binaries used in the training phase in an average time of 30.2 s. It
detects 100% of a set of 10 crypto-ransomware binaries not used in
the training phase, losing only an average of 99 MB of user data before
detection.

The time window length is a tuneable parameter in the feature
extraction process, and it must be configured depending on the scenario
and user and server characteristics. The best trade-off in the results
was obtained with a time window of 30 s. Using larger values of time
window, the ransomware encrypts a significant number of bytes (more
than 100 MB of data on average). Shorter time windows result in
a higher number of false positives, which could annoy the network
administrator and make the tool useless. Finally, we compared the
model in this paper with other crypto-ransomware detection tools in the
literature. Despite the novelty of the scenario that hinders comparison,
the tool improves most of the results found in the literature.

CRediT authorship contribution statement

Eduardo Berrueta: Methodology, Software, Validation, Investiga-
ion, Resources, Visualization, Writing – original draft, Writing – review

editing. Daniel Morato: Conceptualization, Methodology, Software,
Formal analysis, Writing – original draft, Writing – review & editing,
Supervision, Project administration, Funding acquisition. Eduardo Ma-
gaña: Conceptualization, Writing – original draft, Funding acquisition.
Mikel Izal: Methodology, Validation, Writing – original draft, Funding
acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data is available at (Berrueta et al., 2021).

Acknowledgements

Funding

This work was supported by Spanish Ministry of Science and Innova-
tion through project PID2019-104451RB-C22/AEI/10.13039/
501100011033. Open access funding provided by Universidad Pública

de Navarra.

Expert Systems With Applications 209 (2022) 118299E. Berrueta et al.

A

A

A

A

A

A

A

A

A

A

B

B

B

B

B

B

C

C

C

C

C

C

E

F

H

H

H

H

I

J

K

K

L

L

L

M

M

M

M

M

M

M

M

N

N

N

References

Agrawal, R., Stokes, J. W., Selvaraj, K., & Marinescu, M. (2019). Attention in recurrent
neural networks for ransomware detection. In ICASSP 2019 - 2019 IEEE international
conference on acoustics, speech and signal processing (ICASSP) (pp. 3222–3226).

hmadian, M. M., & Shahriari, H. R. (2016). 2EntFOX: A framework for high survivable
ransomwares detection. In 2016 13th International iranian society of cryptology
conference on information security and cryptology (ISCISC) (pp. 79–84). http://dx.
doi.org/10.1109/ISCISC.2016.7736455.

hmadian, M. M., Shahriari, H. R., & Ghaffarian, S. M. (2015). Connection-monitor
& connection-breaker: A novel approach for prevention and detection of high
survivable ransomwares. In 2015 12th International iranian society of cryptology
conference on information security and cryptology (ISCISC) (pp. 79–84). IEEE.

hmed, M. E., Kim, H., Camtepe, S., & Nepal, S. (2021). Peeler: Profiling kernel-level
events to detect ransomware. In E. Bertino, H. Shulman, & M. Waidner (Eds.),
Computer security – ESORICS 2021 (pp. 240–260). Cham: Springer International
Publishing.

hmed, Y. A., Koçer, B., Huda, S., Al-rimy, B. A. S., & Hassan, M. M. (2020). A
system call refinement-based enhanced Minimum Redundancy Maximum Rele-
vance method for ransomware early detection. Journal of Network and Computer
Applications, 167, Article 102753.

l-rimy, B. A. S., Maarof, M. A., & Shaid, S. Z. M. (2019). Crypto-ransomware early
detection model using novel incremental bagging with enhanced semi-random
subspace selection. Future Generation Computer Systems, 101, 476–491.

lam, M., Bhattacharya, S., Mukhopadhyay, D., & Chattopadhyay, A. (2018). RAPPER:
Ransomware prevention via performance counters. URL http://arxiv.org/abs/1802.
03909.

lmashhadani, A. O., Kaiiali, M., Carlin, D., & Sezer, S. (2020). MaldomDetector:
A system for detecting algorithmically generated domain names with machine
learning. Computers & Security, 93, Article 101787. http://dx.doi.org/10.1016/j.
cose.2020.101787.

lmashhadani, A. O., Kaiiali, M., Sezer, S., & O’Kane, P. (2019). A multi-classifier
network-based crypto ransomware detection system: A case study of locky
ransomware. IEEE Access, 7, 47053–47067.

pple (2012). Apple filing protocol programming guide. URL https://developer.
apple.com/library/archive/documentation/Networking/Conceptual/AFP/Concepts/
Concepts.html Last access: August 2022.

rabo, A., Dijoux, R., Poulain, T., & Chevalier, G. (2020). Detecting ransomware
using process behavior analysis. Procedia Computer Science, 168, 289–296. http:
//dx.doi.org/10.1016/j.procs.2020.02.249.

errueta, E., Morato, D., Magaña, E., & Izal, M. (2018). Ransomware encrypted your
files but you restored them from network traffic. In 2018 2nd Cyber security in
networking conference (CSNet) (pp. 1–7).

errueta, E., Morato, D., Magaña, E., & Izal, M. (2019). A survey on detection
techniques for cryptographic ransomware. IEEE Access, 7, 144925–144944. http:
//dx.doi.org/10.1109/ACCESS.2019.2945839.

errueta, E., Morato, D., Magaña, E., & Izal, M. (2020). Open repository for the
evaluation of ransomware detection tools. IEEE Access, 8, 65658–65669. http:
//dx.doi.org/10.1109/ACCESS.2020.2984187.

errueta, E., Morato, D., Magaña, E., & Izal, M. (2021). Ransomware and user samples
for training and validating ML models. http://dx.doi.org/10.17632/yhg5wk39kf.1.

errueta, E., Morato, D., Magaña, E., & Izal, M. (2022). Ransomware PCAP repository.
URL http://dataset.tlm.unavarra.es/ransomware/ Last Access: June 2022.

ijitha, C. V., Sukumaran, R., & Nath, H. V. (2020). A survey on ransomware detection
techniques. In S. K. Sahay, N. Goel, V. Patil, & M. Jadliwala (Eds.), Secure knowledge
management in artificial intelligence era (pp. 55–68). Singapore: Springer Singapore.

abaj, K., & Mazurczyk, W. (2016). Using software-defined networking for ransomware
mitigation: the case of cryptowall. IEEE Network, 30(6), 14–20.

hadha, S., & Kumar, U. (2017). Ransomware: Let’s fight back!. In 2017 International
conference on computing, communication and automation (ICCCA) (pp. 925–930).
IEEE.

hen, Z.-G., Kang, H.-S., Yin, S.-N., & Kim, S.-R. (2017). Automatic ransomware
detection and analysis based on dynamic API calls flow graph. In Proceedings of the
international conference on research in adaptive and convergent systems (pp. 196–201).

obb, S. (2018). Ransomware vs printing press? US newspapers face "foreign cyber-
attack". URL https://www.welivesecurity.com/2018/12/31/ransomware-printing-
press-newspapers/ Last access: August 2022.

ohen, A., & Nissim, N. (2018). Trusted detection of ransomware in a private cloud
using machine learning methods leveraging meta-features from volatile memory.
Expert Systems with Applications, 102, 158–178. http://dx.doi.org/10.1016/j.eswa.
2018.02.039.

ontinella, A., Guagnelli, A., Zingaro, G., Pasquale, G. D., Barenghi, A., Zanero, S.,
& Maggi, F. (2016). ShieldFS: A self-healing, ransomware-aware filesystem. In
Proceedings of the 32nd annual conference on computer security applications - ACSAC
16. ACM Press, http://dx.doi.org/10.1145/2991079.2991110.

UROPOL (2016). Internet organised crime thread assessment (IOCTA) 2016: Technical
Report, Europol - European Police Office, http://dx.doi.org/10.2813/275589.

aghihi, F., & Zulkernine, M. (2021). RansomCare: Data-centric detection and mitigation
against smartphone crypto-ransomware. Computer Networks, 191, Article 108011.
http://dx.doi.org/10.1016/j.comnet.2021.108011.
16
Feng, Y., Liu, C., & Liu, B. (2017). Poster: A new approach to detecting ransomware
with deception. In 38th IEEE symposium on security and privacy.

Hasan, M. M., & Rahman, M. M. (2017). RansHunt: A support vector machines
based ransomware analysis framework with integrated feature set. In 2017 20th
International conference of computer and information technology (ICCIT) (pp. 1–7).
IEEE.

aynes, T., & Noveck, D. (2015). Network file system (NFS) version 4 protocol: RFC 7530
RFC Editor, URL https://tools.ietf.org/html/rfc7530.

errera Silva, J. A., Barona Lopez, L. I., Valdivieso Caraguay, A. L., & Hernandez-
Alvarez, M. (2019). A survey on situational awareness of ransomware attacks—
Detection and prevention parameters. Remote Sensing, 11(10), http://dx.doi.org/
10.3390/rs11101168.

irano, M., & Kobayashi, R. (2019). Machine learning based ransomware detection
using storage access patterns obtained from live-forensic hypervisor. In 2019
Sixth international conference on internet of things: systems, management and security
(IOTSMS) (pp. 1–6). IEEE.

wang, J., Kim, J., Lee, S., & Kim, K. (2020). Two-stage ransomware detection using dy-
namic analysis and machine learning techniques. Wireless Personal Communications,
112(4), 2597–2609.

ntelligence, M. (2021). Global network attached storage (nas) market -
growth, trends, COVID-19 Impact, and forecasts (2021 - 2026). URL
https://www.mordorintelligence.com/industry-reports/network-attached-storage-
nas-market, Last access: August 2022.

ulián-Moreno, G., Leira, R., de Vergara, J. E. L., Gómez-Arribas, F. J., & González, I.
(2018). On the feasibility of 40 Gbps network data capture and retention with general
purpose hardware. New York, NY, USA: Association for Computing Machinery,
http://dx.doi.org/10.1145/3167132.3167238.

ara, I., & Aydos, M. (2022). The rise of ransomware: Forensic analysis for windows
based ransomware attacks. Expert Systems with Applications, 190, Article 116198.
http://dx.doi.org/10.1016/j.eswa.2021.116198.

harraz, A., Arshad, S., Mulliner, C., Robertson, W. K., & Kirda, E. (2016). UNVEIL:
A large-scale, automated approach to detecting ransomware. In USENIX security
symposium.

ee, K., Lee, S., & Yim, K. (2019). Machine learning based file entropy analysis
for ransomware detection in backup systems. IEEE Access, 7, 110205–110215.
http://dx.doi.org/10.1109/ACCESS.2019.2931136.

oman, M. (2019). How the most damaging ransomware evades IT secu-
rity. URL https://news.sophos.com/en-us/2019/11/14/how-the-most-damaging-
ransomware-evades-it-security/, Last access: August 2022.

u, T., Zhang, L., Wang, S., & Gong, Q. (2017). Ransomware detection based on V-
detector negative selection algorithm. In 2017 International conference on security,
pattern analysis, and cybernetics (SPAC) (pp. 531–536). IEEE.

aniath, S., Ashok, A., Poornachandran, P., Sujadevi, V. G., Sankar A.U., P., &
Jan, S. (2017). Deep learning LSTM based ransomware detection. In 2017 Recent
developments in control, automation power engineering (RDCAPE) (pp. 442–446).

bol, F., Robert, J.-M., & Sadighian, A. (2016). An efficient approach to detect
torrentlocker ransomware in computer systems. In International conference on
cryptology and network security (pp. 532–541). Springer.

cIntosh, T., Kayes, A. S. M., Chen, Y.-P. P., Ng, A., & Watters, P. (2021). Ransomware
mitigation in the modern era: A comprehensive review, research challenges,
and future directions. ACM Computing Surveys, 54(9), http://dx.doi.org/10.1145/
3479393.

ehnaz, S., Mudgerikar, A., & Bertino, E. (2018). RWGuard: A real-time detection sys-
tem against cryptographic ransomware. In M. Bailey, T. Holz, M. Stamatogiannakis,
& S. Ioannidis (Eds.), Research in attacks, intrusions, and defenses (pp. 114–136).
Cham: Springer International Publishing.

icrosoft (2020). Windows 7 support ended on January 14, 2020. URL
https://support.microsoft.com/en-us/help/4057281/windows-7-support-ended-
on-january-14-2020 Last Access: August 2022.

oore, C. (2016). Detecting ransomware with honeypot techniques. In 2016
Cybersecurity and cyberforensics conference (CCC) (pp. 77–81). IEEE.

orato, D., Berrueta, E., na, E. M., & Izal, M. (2018). Ransomware early detection by
the analysis of file sharing traffic. Journal of Network and Computer Applications,
124, 14–32. http://dx.doi.org/10.1016/j.jnca.2018.09.013.

oussaileb, R., Bouget, B., Palisse, A., Le Bouder, H., Cuppens, N., & Lanet, J.-L. (2018).
Ransomware’s early mitigation mechanisms. In Proceedings of the 13th international
conference on availability, reliability and security (p. 2). ACM.

etApp (2018). What is the default negotiated SMB version with various versions
of data ONTAP and windows clients?. URL https://kb.netapp.com/Advice_and_
Troubleshooting/Data_Storage_Software/ONTAP_OS/What_is_the_default_negotiated_
SMB_version_with_various_versions_of_Data_ONTAP_and_Windows_clients, Last
access: August 2022.

etGear (2016). Recommendation for using AFP and SMB in the same envi-
ronment. URL https://kb.netgear.com/29765/Recommendation-for-using-AFP-and-
SMB-in-the-same-environment, Last access: August 2022.

ieuwenhuizen, D. (2016). A behavioural-based approach to ransomware detection.
MWR Labs whitepaper: Technical Report, MWR Labs, URL https://info.varonis.com/
hubfs/docs/whitepapers/en/Varonis-Ransomware-Whitepaper-Netapp.pdf, Last ac-
cess: August 2022.

http://refhub.elsevier.com/S0957-4174(22)01431-2/sb1
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb1
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb1
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb1
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb1
http://dx.doi.org/10.1109/ISCISC.2016.7736455
http://dx.doi.org/10.1109/ISCISC.2016.7736455
http://dx.doi.org/10.1109/ISCISC.2016.7736455
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb3
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb3
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb3
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb3
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb3
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb3
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb3
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb4
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb4
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb4
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb4
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb4
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb4
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb4
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb5
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb5
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb5
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb5
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb5
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb5
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb5
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb6
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb6
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb6
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb6
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb6
http://arxiv.org/abs/1802.03909
http://arxiv.org/abs/1802.03909
http://arxiv.org/abs/1802.03909
http://dx.doi.org/10.1016/j.cose.2020.101787
http://dx.doi.org/10.1016/j.cose.2020.101787
http://dx.doi.org/10.1016/j.cose.2020.101787
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb9
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb9
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb9
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb9
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb9
https://developer.apple.com/library/archive/documentation/Networking/Conceptual/AFP/Concepts/Concepts.html
https://developer.apple.com/library/archive/documentation/Networking/Conceptual/AFP/Concepts/Concepts.html
https://developer.apple.com/library/archive/documentation/Networking/Conceptual/AFP/Concepts/Concepts.html
https://developer.apple.com/library/archive/documentation/Networking/Conceptual/AFP/Concepts/Concepts.html
https://developer.apple.com/library/archive/documentation/Networking/Conceptual/AFP/Concepts/Concepts.html
http://dx.doi.org/10.1016/j.procs.2020.02.249
http://dx.doi.org/10.1016/j.procs.2020.02.249
http://dx.doi.org/10.1016/j.procs.2020.02.249
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb12
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb12
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb12
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb12
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb12
http://dx.doi.org/10.1109/ACCESS.2019.2945839
http://dx.doi.org/10.1109/ACCESS.2019.2945839
http://dx.doi.org/10.1109/ACCESS.2019.2945839
http://dx.doi.org/10.1109/ACCESS.2020.2984187
http://dx.doi.org/10.1109/ACCESS.2020.2984187
http://dx.doi.org/10.1109/ACCESS.2020.2984187
http://dx.doi.org/10.17632/yhg5wk39kf.1
http://dataset.tlm.unavarra.es/ransomware/
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb17
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb17
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb17
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb17
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb17
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb18
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb18
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb18
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb19
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb19
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb19
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb19
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb19
https://www.welivesecurity.com/2018/12/31/ransomware-printing-press-newspapers/
https://www.welivesecurity.com/2018/12/31/ransomware-printing-press-newspapers/
https://www.welivesecurity.com/2018/12/31/ransomware-printing-press-newspapers/
http://dx.doi.org/10.1016/j.eswa.2018.02.039
http://dx.doi.org/10.1016/j.eswa.2018.02.039
http://dx.doi.org/10.1016/j.eswa.2018.02.039
http://dx.doi.org/10.1145/2991079.2991110
http://dx.doi.org/10.2813/275589
http://dx.doi.org/10.1016/j.comnet.2021.108011
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb26
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb26
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb26
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb27
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb27
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb27
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb27
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb27
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb27
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb27
https://tools.ietf.org/html/rfc7530
http://dx.doi.org/10.3390/rs11101168
http://dx.doi.org/10.3390/rs11101168
http://dx.doi.org/10.3390/rs11101168
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb30
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb30
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb30
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb30
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb30
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb30
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb30
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb31
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb31
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb31
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb31
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb31
https://www.mordorintelligence.com/industry-reports/network-attached-storage-nas-market
https://www.mordorintelligence.com/industry-reports/network-attached-storage-nas-market
https://www.mordorintelligence.com/industry-reports/network-attached-storage-nas-market
http://dx.doi.org/10.1145/3167132.3167238
http://dx.doi.org/10.1016/j.eswa.2021.116198
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb35
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb35
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb35
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb35
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb35
http://dx.doi.org/10.1109/ACCESS.2019.2931136
https://news.sophos.com/en-us/2019/11/14/how-the-most-damaging-ransomware-evades-it-security/
https://news.sophos.com/en-us/2019/11/14/how-the-most-damaging-ransomware-evades-it-security/
https://news.sophos.com/en-us/2019/11/14/how-the-most-damaging-ransomware-evades-it-security/
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb38
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb38
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb38
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb38
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb38
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb39
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb39
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb39
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb39
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb39
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb40
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb40
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb40
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb40
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb40
http://dx.doi.org/10.1145/3479393
http://dx.doi.org/10.1145/3479393
http://dx.doi.org/10.1145/3479393
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb42
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb42
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb42
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb42
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb42
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb42
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb42
https://support.microsoft.com/en-us/help/4057281/windows-7-support-ended-on-january-14-2020
https://support.microsoft.com/en-us/help/4057281/windows-7-support-ended-on-january-14-2020
https://support.microsoft.com/en-us/help/4057281/windows-7-support-ended-on-january-14-2020
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb44
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb44
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb44
http://dx.doi.org/10.1016/j.jnca.2018.09.013
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb46
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb46
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb46
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb46
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb46
https://kb.netapp.com/Advice_and_Troubleshooting/Data_Storage_Software/ONTAP_OS/What_is_the_default_negotiated_SMB_version_with_various_versions_of_Data_ONTAP_and_Windows_clients
https://kb.netapp.com/Advice_and_Troubleshooting/Data_Storage_Software/ONTAP_OS/What_is_the_default_negotiated_SMB_version_with_various_versions_of_Data_ONTAP_and_Windows_clients
https://kb.netapp.com/Advice_and_Troubleshooting/Data_Storage_Software/ONTAP_OS/What_is_the_default_negotiated_SMB_version_with_various_versions_of_Data_ONTAP_and_Windows_clients
https://kb.netapp.com/Advice_and_Troubleshooting/Data_Storage_Software/ONTAP_OS/What_is_the_default_negotiated_SMB_version_with_various_versions_of_Data_ONTAP_and_Windows_clients
https://kb.netapp.com/Advice_and_Troubleshooting/Data_Storage_Software/ONTAP_OS/What_is_the_default_negotiated_SMB_version_with_various_versions_of_Data_ONTAP_and_Windows_clients
https://kb.netgear.com/29765/Recommendation-for-using-AFP-and-SMB-in-the-same-environment
https://kb.netgear.com/29765/Recommendation-for-using-AFP-and-SMB-in-the-same-environment
https://kb.netgear.com/29765/Recommendation-for-using-AFP-and-SMB-in-the-same-environment
https://info.varonis.com/hubfs/docs/whitepapers/en/Varonis-Ransomware-Whitepaper-Netapp.pdf
https://info.varonis.com/hubfs/docs/whitepapers/en/Varonis-Ransomware-Whitepaper-Netapp.pdf
https://info.varonis.com/hubfs/docs/whitepapers/en/Varonis-Ransomware-Whitepaper-Netapp.pdf

Expert Systems With Applications 209 (2022) 118299E. Berrueta et al.

S

S

S

Z

Paik, J.-Y., Shin, K., & Cho, E.-S. (2016). Poster: Self-defensible storage devices based
on flash memory against ransomware. In Proceedings of IEEE symposium on security
and privacy .

Pyle, N. (2020). Stop using SMB1. URL https://techcommunity.microsoft.com/t5/
storage-at-microsoft/stop-using-smb1/ba-p/425858 Last Access: August 2022.

Quinkert, F., Holz, T., Hossain, K. S. M. T., Ferrara, E., & Lerman, K. (2018). RAPTOR:
Ransomware attack predicTOR. URL http://arxiv.org/abs/1803.01598.

Ramesh, G., & Menen, A. (2020). Automated dynamic approach for detecting
ransomware using finite-state machine. Decision Support Systems, 138, Article
113400.

Reddy, B. V., Krishna, G. J., Ravi, V., & Dasgupta, D. (2021). Machine learning and
feature selection based ransomware detection using hexacodes. In V. Bhateja, S.-
L. Peng, S. C. Satapathy, & Y.-D. Zhang (Eds.), Evolution in computational intelligence
(pp. 583–597). Singapore: Springer Singapore.

Roy, K. C., & Chen, Q. (2020). DeepRan: Attention-based BiLSTM and CRF for
ransomware early detection and classifcation. Information Systems Frontiers, 1–17.

caife, N., Carter, H., Traynor, P., & Butler, K. R. B. (2016). CryptoLock (and drop
it): Stopping ransomware attacks on user data. In 2016 IEEE 36th international
conference on distributed computing systems (ICDCS) (pp. 303–312). http://dx.doi.
org/10.1109/ICDCS.2016.46.

gandurra, D., Muñoz González, L., Mohsen, R., & Lupu, E. C. (2016). Automated
dynamic analysis of ransomware: Benefits, limitations and use for detection. arXiv
preprint arXiv:1609.03020.

haukat, S. K., & Ribeiro, V. J. (2018). RansomWall: A layered defense system
against cryptographic ransomware attacks using machine learning. In 2018 10th
International conference on communication systems & networks (COMSNETS) (pp.
356–363). IEEE.
17
Shukla, M., Mondal, S., & Lodha, S. (2016). Poster: Locally virtualized environment for
mitigating ransomware threat. In Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security (pp. 1784–1786).

Sjouwerman, S. (2019). Ransomware’s impact highlights the threat of social engineer-
ing. URL https://blog.knowbe4.com/ransomwares-impact-highlights-the-threat-of-
social-engineering Last access: August 2022.

Sommer, R., & Paxson, V. (2010). Outside the closed world: On using machine learning
for network intrusion detection. In 2010 IEEE symposium on security and privacy (pp.
305–316). IEEE.

Sophos (2020). The state of ransomware 2020: Technical Report, Sophos, URL
https://www.sophos.com/en-us/medialibrary/Gated-Assets/white-papers/sophos-
the-state-of-ransomware-2020-wp.pdf, Last access: August 2022.

TrendMicro (2019). Report: Huge increase in ransomware attacks on businesses. URL
https://www.trendmicro.com/vinfo/us/security/news/threat-landscape/report-
huge-increase-in-ransomware-attacks-on-businesses Last access: August 2022.

Victor, K. (2020). Reflective loading runs netwalker fileless ransomware. URL
https://www.trendmicro.com/en_us/research/20/e/netwalker-fileless-ransomware-
injected-via-reflective-loading.html Last access: August 2022.

Vidyarthi, D., Kumar, C., Rakshit, S., & Chansarkar, S. (2019). Static malware analysis
to identify ransomware properties. International Journal of Computer Science Issues
(IJCSI), 16(3), 10–17.

Vinayakumar, R., Soman, K., Velan, K. S., & Ganorkar, S. (2017). Evaluating shallow
and deep networks for ransomware detection and classification. In 2017 Interna-
tional conference on advances in computing, communications and informatics (ICACCI)
(pp. 259–265). IEEE.

Zhang, B., Xiao, W., Xiao, X., Sangaiah, A. K., Zhang, W., & Zhang, J. (2020).
Ransomware classification using patch-based CNN and self-attention network on
embedded N-grams of opcodes. Future Generation Computer Systems, 110, 708–720.

uhair, H., Selamat, A., & Krejcar, O. (2020). A multi-tier streaming analytics model of
0-day ransomware detection using machine learning. Applied Sciences, 10(9), 3210.

https://techcommunity.microsoft.com/t5/storage-at-microsoft/stop-using-smb1/ba-p/425858
https://techcommunity.microsoft.com/t5/storage-at-microsoft/stop-using-smb1/ba-p/425858
https://techcommunity.microsoft.com/t5/storage-at-microsoft/stop-using-smb1/ba-p/425858
http://arxiv.org/abs/1803.01598
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb53
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb53
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb53
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb53
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb53
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb54
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb54
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb54
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb54
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb54
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb54
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb54
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb55
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb55
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb55
http://dx.doi.org/10.1109/ICDCS.2016.46
http://dx.doi.org/10.1109/ICDCS.2016.46
http://dx.doi.org/10.1109/ICDCS.2016.46
http://arxiv.org/abs/1609.03020
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb58
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb58
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb58
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb58
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb58
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb58
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb58
https://blog.knowbe4.com/ransomwares-impact-highlights-the-threat-of-social-engineering
https://blog.knowbe4.com/ransomwares-impact-highlights-the-threat-of-social-engineering
https://blog.knowbe4.com/ransomwares-impact-highlights-the-threat-of-social-engineering
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb61
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb61
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb61
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb61
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb61
https://www.sophos.com/en-us/medialibrary/Gated-Assets/white-papers/sophos-the-state-of-ransomware-2020-wp.pdf
https://www.sophos.com/en-us/medialibrary/Gated-Assets/white-papers/sophos-the-state-of-ransomware-2020-wp.pdf
https://www.sophos.com/en-us/medialibrary/Gated-Assets/white-papers/sophos-the-state-of-ransomware-2020-wp.pdf
https://www.trendmicro.com/vinfo/us/security/news/threat-landscape/report-huge-increase-in-ransomware-attacks-on-businesses
https://www.trendmicro.com/vinfo/us/security/news/threat-landscape/report-huge-increase-in-ransomware-attacks-on-businesses
https://www.trendmicro.com/vinfo/us/security/news/threat-landscape/report-huge-increase-in-ransomware-attacks-on-businesses
https://www.trendmicro.com/en_us/research/20/e/netwalker-fileless-ransomware-injected-via-reflective-loading.html
https://www.trendmicro.com/en_us/research/20/e/netwalker-fileless-ransomware-injected-via-reflective-loading.html
https://www.trendmicro.com/en_us/research/20/e/netwalker-fileless-ransomware-injected-via-reflective-loading.html
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb65
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb65
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb65
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb65
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb65
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb66
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb66
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb66
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb66
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb66
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb66
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb66
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb67
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb67
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb67
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb67
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb67
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb68
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb68
http://refhub.elsevier.com/S0957-4174(22)01431-2/sb68

	Crypto-ransomware detection using machine learning models in file-sharing network scenarios with encrypted traffic
	Introduction
	Background and related work
	Scenario and methodology
	Protocol behaviour
	Dataset
	Feature extraction
	Sample filtering
	ML models and evaluation metrics

	Results of model selection, validation and optimization
	ML model selection
	Neural network model optimization
	Model validation using different file-sharing protocols

	Discussion and comparison with previous research
	Advantages and caveats in a passive file-sharing traffic analysis scenario
	Comparison of effectiveness
	Locally installed tools
	Network based tools

	Limitations and future work

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

