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ABSTRACT Crypto-ransomware is a type of malware that encrypts user files, deletes the original data,
and asks for ransom to recover the hijacked documents. Several articles have presented detection techniques
for this type of malware; these techniques are applied before the ransomware encrypts files or during its
action in an infected host. The evaluation of these proposals has always been accomplished using sets of
ransomware samples that are prepared locally for the research article, without making the data available.
Different studies use different sets of samples and different evaluation metrics, resulting in insufficient
comparability. In this paper, we describe a public data repository containing the file access operations of
more than 70 ransomware samples during the encryption of a large network shared directory. These data
have already been used successfully in the evaluation of a network-based ransomware detection algorithm.
Now, we are making these data available to the community and describing their details, how they were
captured, and how they can be used in the evaluation and comparison of the results of most ransomware
detection techniques.

INDEX TERMS Ransomware, open repository, traffic analysis.

I. INTRODUCTION
Ransomware is a type of malware that hijacks computers
by locking them or by encrypting their files. The former
is called lockscreen ransomware, while the latter is named
crypto-ransomware or cryptoware. Cryptoware has become
more important in recent years owing to its increased num-
ber of infections. In 2015 and 2016, the number of new
ransomware samples detected increased rapidly, rising from
9296 to 32091 just in the last four months of 2016, according
to Kaspersky Labs [1]. In the past two years (2018 and 2019),
the number of new ransomware samples and the number of
infections decreased (20% in 2018) [2]; however, this drop
was caused by a change in the targets of the ransomware
from the general population to specific companies. In 2019,
Symantec reported that enterprise infections were up by 12%
in 2018 and accounted for 81% of all ransomware infections
in that year [2].

The importance of this type of malware encouraged the
development of detection tools both in research and in cyber-
security enterprises. Among the research papers published
in the past 4 or 5 years, the vast majority based detection
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on dynamic information obtained at the infected computer
while the ransomware was running, such as the increase
in file data entropy and the frequency of read and write
operations or the system functions called. Other methods
use information obtained from network traffic, such as the
Domain Name System (DNS) requests [3] or general traf-
fic statistics: Transmission Control Protocol (TCP) connec-
tions, Internet Protocol (IP) addresses, or TCP ports [4].
The tools developed for Android devices analyse the pro-
gram binary by searching for specific function calls, text
strings, or even some elements in the screen. The program
is labelled as ransomware based on the combination of
values of some of the parameters mentioned [5], [6] or,
in some cases, by using them as input in a machine learning
procedure [7], [8].

Although the detection accuracy of such tools is frequently
reported in research papers, sometimes it is difficult to com-
pare these results with each other because they are tested
in different scenarios or because the evaluation parameters
(the true positive rate, the false negative rate, or the detection
accuracy, for example) are not the same for all the tools.
Also some tools are tested only with one ransomware sample,
so an accuracy of 100% does not mean the same as in other
approaches that are tested using hundreds of samples [9].
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The main problem in testing detection tools is not the lack
of ransomware samples, but the lack of working samples,
as they stop being functional when their control servers go
down (when they are found out by cybersecurity agencies,
for example). The ransomware samples must be run while
the control servers are active, and all the activity information
must be extracted to test any detection tool. There are some
public websites where ransomware binaries are uploaded:
malware-traffic-analysis [10] or hybrid-analysis [11], for
example. These websites offer binaries of different types of
malware (including ransomware), and they analyse the binary
and some other aspects of the malware, such as the infection
vector or the DNS queries. However, none of these reposito-
ries provides the information needed for detection tools based
on the dynamic behaviour of the malware.

This paper describes a public repository, available at IEEE
DataPort and our local servers,1 containing dynamic infor-
mation obtained from more than 70 ransomware samples in
action. We have been collecting these data since 2015 and
we keep updating the repository. The dynamic information is
obtained by running each binary in a scenario with a shared
directory between a server and a client. The ransomware
encrypts all the files in this directory, and we capture the
network traffic and store it in a trace file. The file also
contains other traffic that the client generates during the
encryption — for example, DNS requests and connections
to Command-and-Control (C&C) servers. We have extracted
all the input/output (I/O) operations from the file-sharing
protocol, and we offer independent files containing this infor-
mation, which can be used in detection methods based on file
access operations.

The main contributions of this paper are:
• We offer an updated ransomware sample repository with
the result of running more than 70 samples from 31 dif-
ferent ransomware strains. These samples contain more
than 1 TB of data in more than 200 traces. The behaviour
of the malware can be analysed, as each samples shows
the ransomware in action.

• New tools can be tested with old samples that are now
deactivated for several reasons but could be reactivated
in the future.

• Tools based on analysing file access operations can be
tested, as the repository offers all the I/O operations
executed by the ransomware samples.

• We prove that the majority of existing tools can be tested
with this repository.

• The repository is kept updated and contains ransomware
binaries since 2015.

The paper is structured as follows: Section II presents a his-
torical review of ransomware strain appearances and the most
important outbreaks. In Section III, we explain the scenario
andmethodology used for capturing the traces of ransomware
activity. Then, in Section IV, we present a brief description
of the files in the repository and an analysis of two samples,

1http://dataset.tlm.unavarra.es/ransomware

FIGURE 1. Number of new ransomware families appearing from 2015 to
2019 [2], [14].

andwe extract important ransomware characteristics from the
files in the repository as an example of what can be done
with these data. In Section V, we explain why this repository
is useful for ransomware research. Finally, in Section VI,
we present the conclusions of this paper.

II. HISTORY AND CLASSIFICATION OF RANSOMWARE
The first documented ransomware (the PC Cyborg locker
ransomware) appeared in 1989, but it was not until 2013 that
this type of malware was considered an important problem
for home users and enterprises, with the appearances of the
first crypto-ransomware (CryptoLocker [12]).

In 2016, Europol declared that cryptoware had become
‘‘the most prominent malware threat [. . . ] for citizens and
enterprises alike’’ [13]. Since then, the strategy used by
ransomware developers has changed. Enterprise targets are
a more profitable objective than individual users; therefore,
hackers have focused on them. Consequently, although the
total number of infections and the appearance of new ran-
somware strains has dropped, in 2019 ransomware was still
considered as ‘‘the top cyber threat faced by European cyber-
crime investigator’’ by Europol [14].

Figure 1 shows the number of new ransomware strains
from 2015 to 2019. In 2016, this number increased to 98,
while in 2018, there were only 10 new ransomware strains.
This has not caused a drop in the attackers’ benefits, as they
have changed the target of these attacks from users to enter-
prises (in 2018, the number of enterprise infections was four
times higher than in the general population) [2].

In addition to the appearance of new ransomware strains,
each strain has multiple variants or versions with different
behaviours, C&C servers, and names. Sometimes, the ran-
somware authors change the behaviour of the malware to
make detection more difficult or because the filtration of
private keys enables file decryption.

Figure 2 shows the number of new ransomware sam-
ples detected between the end of 2016 and the beginning
of 2019 [15], [16]. Although there was an increase in the
number of new ransomware strains in 2016, it was not
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FIGURE 2. Number of new ransomware samples appearing from 2016 to
2019 [15], [16].

FIGURE 3. Ransomware infection steps.

reflected significantly in the number of samples. However,
in 2017, the number of new ransomware samples increased
more then three-fold compared with the last quarter of 2016.
This increase could be caused by new strategies in malware
development in the samples discovered in 2017.

In these two years (2016 and 2017) the number of infec-
tions increased too. The most important ransomware in terms
of infections in 2016 was TeslaCrypt [17], which reached
90% of all ransomware infections. In May 2016, its devel-
opers published the decryption key and the ransomware dis-
appeared. In terms of profits, Locky was the most profitable
ransomware in 2016, with more than $7 million [18].

In 2017, there were important infections in enterprises,
like the WannaCry attack (May 2017) [19], which hit some
important enterprises, such as the Spanish telecommunica-
tions company Telefónica. This ransomware variant was still
active (with some updates) in 2018, hitting some important
hospitals in the United Kingdom and costing near £92 million
to the British National Health Service [20]. In that year,
the case of Cerber was also very important, earning $6.9 mil-
lion [18]. There were more than five different versions of this
ransomware, defined by the authors themselves in the ransom
note left in the infected machine.

Other ransomware variants, such as GandCrab, Ryuk, and
BitPaymer, hit some important enterprises worldwide during
2018 and 2019 [21]–[23].

In general, the behaviour of all cryptoware strains is sim-
ilar. Figure 3 presents the five steps of the infection process.
We briefly name and describe them below:

1) Infection: The attack vectors are the same as in
other types of malware. The most common method
is sending e-mail-attached files that are executed
by the user (39.4% of infections [9]). In other
cases, the binaries are downloaded from infected web
pages. Finally, some ransomware strains implement

a worm-like behaviour to propagate through a Local
Area Network.

2) Contact C&C servers: Some ransomware strains con-
tact a C&C server to obtain or store the encryption key.
This server can be located using statically configured
IP addresses, static DNS names, or dynamically gen-
erated DNS names. This step can take place after the
data encryption if the ransomware works offline, and
the C&C server is contacted in the last step, only to
store the decryption key.

3) Encryption key management: The key can be obtained
from C&C servers or be generated locally and then
stored on the server. The ransomware encrypts locally
generated keys with one obtained from the C&C server.

4) Data encryption: This is the main task of cryptoware.
The ransomware encrypts and deletes user files. It usu-
ally also affects files and volumes mounted using a
network file-sharing protocol.

5) Extortion: As the last step, the malware requests the
payment of ransom to decrypt the files. It can place
some files in different formats (plain text, html, images)
in each directory, explaining how to pay the ransom.
It usually sets a deadline and threatens to delete some
of the user’s files every hour.

Different ransomware strains carry out each step in dif-
ferent ways. The detection tools must be aware of these
differences, as they aim to detect all ransomware strains,
if possible, before the fourth step (data encryption), to prevent
the loss of files.

The detection in the first step of the infection pro-
cess is accomplished using firewalls, anti-malware software
installed in the user machines, or educating the users to
neither download nor execute files with doubtful origins.

In the second step, the detection must be done by analysing
the users’ traffic. Firewalls can block traffic to some black-
listed IP addresses or some DNS requests. Until the des-
tinations can be blacklisted, firewalls do not block the
requests. These are the zero-days attacks. Some ransomware
strains, such as Locky, use a Domain Generation Algo-
rithm (DGA) for its C&C server address. This makes iden-
tifying these servers more difficult. To address this issue,
there are some tools that try to detect names generated by
a DGA [24], [25].

To detect the malware in the third step, some tools analyse
the system function calls. The frequent use of a set of func-
tions can indicate that a process is encrypting files. Crypto-
graphic keys in processmemory can also be recognised owing
to their structure.Monitoring software can inspect the process
memory, search for keys, and alert the user. The success rate
of these tools depends on how the ransomware manages cryp-
tographic keys and what kind of cryptographic algorithms
they use (asymmetric, symmetric, or hybrid). Detection in
the first and second phases of ransomware action does not
require the tools to be installed in the machine; however,
in this third step, the tools must analyse some parameters that
are available only in the infected machine.
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FIGURE 4. Timeline of collected samples.

The fourth step is the last opportunity for detection before
losing data. The tools that focus on this phase usually anal-
yse some parameters obtained from user files: change of
entropy in the content, modification of magic bytes, read and
write frequency, or directories in which the malware encrypts
files are some examples. These parameters are more useful
in some ransomware strains than in others because special
malware behaviour can be determinant for detection. Some
examples of ransomware behaviour that can evade detection
by these tools are:
• Some Cerber samples do not encrypt the first bytes of
the files (magic bytes) [26]; thus, the tools that analyse
the change of these bytes [27] will not be able to detect
them.

• Some ransomware strains, such as CryptFile2, do not
delete the files or change the file extension. They just
overwrite the file with the encrypted data. Some tools
base detection primarily on these two aspects [6], [28].

• The read and write frequency is commonly used by these
tools to detect themalware [29], [30]. Every ransomware
must read and write the files to encrypt them, which they
can do slowly to avoid being detected by these tools.

Finally, ransomware detection in the fifth step is useless,
as the data have already been encrypted. The data could be
recovered from a backup, but that would be recovery, not
detection.

The repository that we present in this paper collects ran-
somware samples from the most important strains since 2015
(and it is regularly updated). In 2016 and 2017, there was
an increase of ransomware sample appearances, which is
reflected in the number of samples that we collected. Figure 4
shows a timeline of the sample collection.

In the next sections, we analyse in depth the content and
structure of the repository, as well as its possible uses for the
research community.

III. SCENARIO AND METHODOLOGY
This section explains in detail the scenario in which the sam-
ples were executed. In recent years, new ransomware strains
have focused on corporations, attacking desktop computers of
large companies. To run the ransomware samples, we selected

a scenario commonly used in enterprise networks, in which
user documents are centralised in file servers. This facilitates
document sharing and economic backups. The file-sharing
protocol used is Server Message Block (SMB), which is the
default and most common option in a Microsoft Windows
environment.

The content of the shared directory on the server must
be set carefully to simulate a real directory. File sizes and
file distribution in a tree structure could alter ransomware
behaviour and detection rate.

The basic parameters defining the scenario for each run of
a ransomware sample are:

1) Operating system: Some ransomware samples were
run in a Windows 7 environment, while others were
run in both Windows 7 and Windows 10 installations.
Windows 7 used version 2 of the SMB protocol, while
Windows 10 used SMB version 3.

2) Network speed: By default, the network speed is set
to the maximum allowed (10 Gb/s). It is possible to
control the network speed by placing a router between
the client and the server. This was used to simulate a
ransomware strain that operates in a slower fashion.

3) Fileset: Random filesets were created. The file pop-
ulation of the directory can affect the ransomware
behaviour because the fileset is encrypted by the
ransomware sample. In Section III-B, this fileset
generation is explained in depth.

A. NETWORK SCENARIO
All ransomware samples are run in the user’s machine, where
the network volume is mounted. All the ransomware that we
found encrypt the shared directory. We captured the traffic
between the client and the server, which contains all the
file operations (open, read, write, rename, delete, or close
operations over the files in the shared directory).

Although capturing the I/O calls locally in the client
machine would be easier, this would cause an increase in
CPU load, which could alter the measurement. A passive net-
work traffic capture reduces interference during ransomware
action. By capturing the file access traffic between the client
and the server, we created a more general repository, useful
for testing tools based on network traffic and on I/O opera-
tions, that we extracted from the trace using a custom traffic
analysis tool.

Figure 5 shows a network scenario similar to the networks
used in a corporate environment, in which the samples were
executed. The infected host accesses the files from a machine
acting as a Network Attached Storage (NAS) filer or server.
In production scenarios, the link from the user to the net-

work is usually at most Gigabit Ethernet, while the links from
the NAS filer are at least 10 GbE. The bottleneck is created
by the disk access latency, which is several times larger
than the network latency or the ransomware encryption time;
therefore, a networking scenario without speed limitations or
losses is not affected by the networking component as much

VOLUME 8, 2020 65661



E. Berrueta et al.: Open Repository for the Evaluation of Ransomware Detection Tools

FIGURE 5. Network scenario.

as by the effect of the disk access speed at the server, which
is similar to running the ransomware locally in the client.

There are two traffic flows suitable for capture in this sce-
nario. The first one is the traffic between the infected host and
the NAS filer. This is the most important flow, and we provide
this traffic for all the ransomware samples that we ran during
at least 5 years. The second flow contains the traffic between
the infected host and servers in the public Internet. This traffic
contains all the DNS requests and the actions taken by the
ransomware to contact C&C servers. Not all ransomware
strains require Internet connectivity (Cerber, CTBLocker, and
Sage do not require C&C servers). We included a traffic
capture of the second flow for some of the samples because
certain ransomware detection techniques are based on this
traffic and can also be tested with these input data.

Both user and server hosts are Windows machines run-
ning virtualised in a VirtualBox environment with a Network
Address Translation configuration in a host with an Intel Core
2 Duo CPU E6750 of 2.66 GHz (one CPU core per virtual
machine). Windows 7 uses version 2 of SMB by default for
the file-sharing traffic, while Windows 10 (and sometimes
Windows 8) uses version 3 of SMB, which is an encrypted
protocol. Some binaries were run in both Windows 7 and
Windows 10 scenarios. The scenario using Windows 10 is
similar to the Windows 7 one, but the change in operating
system can result in not only different versions of SMB
protocol, but also other differences in the TCP/IP stack imple-
mentation. Both traffic traces are available at the repository.

An important advantage of running the ransomware sam-
ples in a network scenario is the possibility of modifying
the network speed. This could be used to simulate a slow
ransomware encryption of files or a slow disk. When running
the ransomware samples locally, the speed of the encryption
is fully determined by the machine in which the samples are
run. We provide samples in which the network speed changes
from 1 to 100 Mb/s to simulate such slower ransomware.

The content of the shared directory is also a fundamental
part of the scenario because it could impose conditions on
the results of some detection tools. The file sizes must rep-
resent the real population of files, spread along directories.

A simpler file structure — for example, equal-size files in
a single directory — could introduce some bias in certain
detection tools. For example, if all the files are very large,
the time between two files encryption will be long, which
would not be representative of a user who creates mainly
small files. We created the directories using a tool developed
based on a study of the content of real user hard disks [31].
Some samples are run using more than one shared directory,
providing samples with different populations of file systems.
In Section IV-B, we give examples of how different ran-
somware strains follow a different order when encrypting
files, so the directory (file types, file sizes, or subdirectories)
can influence the actions taken by the ransomware and there-
fore the effectiveness of different detection techniques.

We automated the process of powering on the user and
server machines, copying the ransomware binary to the user’s
host and executing it. After contact with the C&C (when it
is necessary), the ransomware starts the encryption of the
user files, including the server shared directory, which is
mounted on the user machine. Because the size of the traffic
trace is monitored during the process, we know when the
ransomware finishes the encryption, as the file maintains the
same size for some minutes (30 min, for example). When
this occurs, the machines are automatically powered off and
their images are restored. During the entire process, the traffic
flows described earlier are stored.

Most ransomware detection algorithms take the I/O opera-
tions as input information.We extracted this information from
the traffic trace files, providing an easy-to-use file format
describing all these operations. Tools such as TShark or
Wireshark were considered for the task; however, not only are
they severe RAMandCPUhogs, but we also detectedmissing
messages in the results of their analysis. For example, when
the SMB2 header is fragmented between two TCP segments
and in some cases of TCP disorders, Wireshark cannot follow
the stream of SMB commands [32]. We developed our own
tool to process the traces and extract the I/O operations. For
version 3 of the SMB protocol, it is not possible to extract
these I/O operations, as the SMB data are encrypted.

B. DIRECTORIES SHARED BY THE SERVER
Except for some old samples, all ransomware binaries were
executed in a scenario with a shared directory created follow-
ing the parameters described by N. Agrawal et al. in [31].
Some samples were also run in smaller directories with dif-
ferent characteristics (see Table 1) to create a more varied
repository. These smaller directories havemore file types and,
in general, smaller files. The traces obtained from these sam-
ples can be used to analyse how different directories affect
ransomware behaviour. For example, different file types or
very small files cause some ransomware strains to not encrypt
all the documents.

For the construction of the 5GB directory, we used the
software (Impressions) described in [31]. The authors used
snapshots of file-system metadata collected over a five-year
period representing over 60000 Windows PC file systems
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TABLE 1. Directories information.

FIGURE 6. Cumulative distribution of file sizes in the 5GB dataset.

in a large corporation. These snapshots were used to study
distributions and temporal changes in file size, directory size,
namespace structure, and other characteristics. Once the tool
was created, to ensure the accuracy of generated images,
the authors compared the generated distributions with the
ones obtained from the dataset.

Using the same parameters but a different seed for the ran-
dom number generation, we can generate statistically similar
directories. We can also change the random variable param-
eters and create directories with different characteristics and
rerun old or new binaries if we notice that other characteristics
of files or directories are interesting.

To create directory trees, Impressions uses a Monte Carlo
simulation and the size of the file is sampled from a hybrid
distribution, the body of which is approximated by a lognor-
mal distribution (α1 = 0.76, µ = 9.48, and σ = 2.46), with
a Pareto tail distribution (k = 0.91, χm = 512 MB). These
parameters were obtained by fitting the respective curves to
file sizes obtained from the file system dataset.

The distribution of file sizes is important for the analysis
of ransomware behaviour because some ransomware strains
do not encrypt files smaller or larger than a certain size.
Additionally, for a realistic directory, the distribution of file
sizes (shown in Figure 6) is important because it is used to
determine the ransomware infection time.

The structure of the directory is also important because
not all the ransomware strains iterate through it in the same
manner. Some of them iterate alphabetically, others iterate in
size order, and others randomly. If we placed all files in the
same directory without subdirectories, we would miss these
differences between the ransomware strains. Examples of the
impact of these differences are presented in Section IV-B.

Figure 7 shows the directory tree generated by Impressions
in the 5GB dataset, where the directory names are numbers.

IV. TRAFFIC TRACES, I/O OPERATIONS,
AND NETWORK REQUESTS
This section describes the network traffic traces and I/O
operations files in the repository. First, we present the differ-
ent ransomware strains and the available samples from each
strain. We present two examples of sample analysis using
the I/O operations file of an execution of Cerber and another
one of Locky. These examples show four possible parameters
that can be analysed from the datasets that are present in this
repository, but it is possible to analysemore parameters if they
affect the detection strategy.

In the repository web page, we have included data plots
for some of these parameters to enable their comparison. For
brevity, we show the data from only these two samples.

A. SAMPLE SUMMARY
During the past 5 years, we have collected more than 70 ran-
somware samples from 31 different strains. The binaries
were downloaded from hybrid-analysis [11] and malware-
traffic-analysis [10]. We consider that two samples are dif-
ferent if the binary is different, and that two samples are from
different families if the website from which they were down-
loaded considers them different. Sometimes, it is difficult to
confirm whether a sample is an update of an old strain or it
is a new one, and sometimes this depends on the opinions
expressed at the consulted website.

Table 2 shows a summary of the ransomware samples col-
lected. In each row, one sample from one strain is presented.
For some strains, there is more than one ransomware sample;
in these cases, there is a (+) sign following the strain name.
For the samples executed with more than one shared direc-
tory, the data presented in the table were extracted using the
5GB directory. The complete table and links to the samples
are available at our public repository.

The Directory column in Table 2 indicates the type of
shared directory that the ransomware encrypted when it ran.
The Traffic trace size column indicates the file size of the
network traffic trace captured during ransomware execution.
This is important because not all ransomware strains encrypt
the files in the same manner and the traffic traces do not
have the same size, although they are executed with the
same shared directory. Some ransomware samples (such as
Ryuk or Spora) encrypt only a certain percentage of each
file. Others do not encrypt all files: Cerber does not encrypt
files smaller than 3 kB, BitPaymer encrypts only some files,
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FIGURE 7. Tree of the directory generated. Each circle represents one directory, whose name is a number.

TABLE 2. Ransomware families in the repository. Characteristics.

and CryptoShield does not encrypt large files. Samples of the
Crysis strain encrypt system files and cause the machine to
crash. This is the reason why the size of Crysis samples are
smaller than others.

The last two columns are related to the traffic from the
user to the general Internet. One column indicates whether
the ransomware requested any DNS resolution (we ignored
any name resolution related to Microsoft system domains,
although they are included in the trace). Some ransomware
strains such as Locky generate the C&C server domain names
using a DGA. This is why the Locky samples contain more
DNS requests than other samples. Some samples do not
send any DNS requests because they have the C&C server

IP hardcoded and they do not need to request the DNS,
or because they do not need to contact the C&C server before
the encryption of the files (or ever).

The last column indicates the number of TCP connections
that the user establishes during the encryption process. The
samples that do not establish any TCP connection do not con-
tact their C&C server for the encryption, sometimes because
they generate the keys locally or because they have them
hardcoded. Some of them contact their server at the end of
the encryption to request the key with which they will encrypt
the locally generated one.

Some ransomware strains (such as Cerber) scan the
network looking for other active machines with certain
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vulnerable services or to perform a DDoS attack [33]. This
is not shown in the table, but it can be observed by analysing
the traffic trace.

The columns Packets (M), MB R&W and Open/R&W
ops (K) describe the number (millions) of packets in each
trace, the aggregated amount of megabytes moved in read
and write operations and both the number of files opened
and the number of read and write operations. This infor-
mation is related to the user’s I/O calls accessing the files
in the server. It can be useful for testing some tools that
detect the ransomware based on local I/O operations. The
number of these operations is not the same or even similar
for each ransomware strain, as not all ransomware strains
encrypt the files in the same manner. Regarding open oper-
ations, the differences between the ransomware samples are
even more notable, as some ransomware strains open each
file just once to encrypt it, whereas others open the files
more times (one for reading, another for writing, another for
renaming, etc.).

The information in these I/O-related columns is extracted
from the I/O operations file, which has been extracted from
the traffic trace. The values in the table refer only to suc-
cessful operations, as the status of each operation is in the
I/O operations file. Other examples of information that can
be extracted from the I/O operations file are the number of
deletions and rename operations, the names of the encrypted
files, and the file extensions.

In Section IV-B, an in-depth description of two ran-
somware samples from different strains is presented and some
of the parameters extracted from the I/O operations file are
analysed in detail.

B. SAMPLE ANALYSIS
Two of the most important ransomware strains that appeared
in 2016 and 2017 are Locky and Cerber [17]. Both have some
specific characteristics that we analyse below. In terms of
network traffic, Locky’s C&C server is located in a domain
generated by a DGA, whose name resolution requests can
be found in the traffic traces. Cerber does not generate its
C&C domain name using a DGA, but it scans the network
by sending UDP packets to port 6892 to perform a DDoS
attack [33], which can be seen in the network trace.

In terms of the encryption process, the read and written
bytes, the time between open operations, the number of dele-
tions, and the file sizes are present in the I/O operations files.

1) BYTES READ OR WRITTEN
Figures 8 and 9 show the number of megabytes read and
written per minute by the two ransomware samples (Locky
and Cerber respectively). Both samples take more or less the
same time to encrypt the directory. However, the distribution
of megabytes per minute is not the same. During the first
5-6 min, Locky encrypts few bytes (approximately three
times fewer than Cerber), and the rest of the time it increases
its speed two or three times, while Cerber maintains the
encryption rate constant during the entire process.

FIGURE 8. Read and written bytes per minute by Locky ransomware.

FIGURE 9. Read and written bytes per minute by Cerber ransomware.

Locky’s speed variation can be caused by different factors
but, as we describe in the next sections, the main one is the
size variation of the files that it encrypts. Locky starts with
the smallest files and when the files are small, the encryp-
tion speed falls. Cerber follows an alphabetic order for the
encryption; thus, its speed remains approximately constant.

2) TIME BETWEEN OPENING OPERATIONS
We focus on the time between open operations for the two
ransomware samples (Figure 10). The vast majority of these
times (98–99%) are below 1 s, but Cerber shows smaller
values. Locky opens files very fast, with 50% of the open
operations separated by less than one millisecond, while for
Cerber, only 20% of the operations are so close together. This
is because Locky opens each file more than once, even before
it reads any data. These open operations cause separation
times below 1 ms.

Long times (above 30 ms) between open operations are
more probable for Locky than for Cerber because Cerber per-
forms faster encryption because it does not encrypt files indi-
vidually. Cerber starts the encryption of the next file before
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FIGURE 10. Read and written bytes per minute by Locky and Cerber.

FIGURE 11. Delete operations per minute by Locky and Cerber.

it ends the previous one. This fact is reflected in the total
duration of the directory encryption (see Figures 8 and 9).

These two different behaviours have been analysed using
the information extracted from the traffic traces and I/O
operations files. More ransomware strain behaviours can be
analysed using the files available in this repository.

3) NUMBER OF DELETE OPERATIONS
The number of delete operations (Figure 11) shows the
same behaviour as for the read and write operations
(Figures 8 and 9). Although Cerber maintains the rate of
delete operations as more or less constant during the encryp-
tion phase, Locky deletes more files at the beginning of
this process. Locky starts with the encryption of small files;
therefore, the number of deletions is higher at the beginning
and then falls for larger files.

The ordering of files in the encryption process is impor-
tant because the time that a detection tool takes to detect a
ransomware sample has different consequences for different
ransomware strains. In the case of Locky, delaying the detec-
tion by 2 min means the loss of more than 500 files; in the
case of Cerber, fewer than 300 files would be lost. However,
the opposite happens in terms of byte loss because Cerber

FIGURE 12. Size of files opened. Averages in 60-s intervals.

encrypts more bytes at the beginning of the process compared
with Locky.

4) FILE SIZES
The size of the files encrypted by the two ransomware sam-
ples follows different ordering. Figures 12 shows the average
file sizes in 1-min intervals.While Locky starts the encryption
with the smallest files, Cerber follows an alphabetical order.
This fact can be important for some detection tools because
some of them base detection on the number of delete oper-
ations in a specific time period exceeding a threshold. It is
easier for the ransomware to encrypt a large number of small
files in a short interval than to encrypt random files, which
could be larger.

The file sizes have been obtained from the opening opera-
tions in the I/O operations files. Only one opening operation
for each file has been considered (Locky opens each file more
than once), and the 1-min interval has been chosen to assess
the differences between the two ransomwares strains.

V. POSSIBLE USES FOR THE DATA IN THE REPOSITORY
The purpose of this repository is to be used for testing new
and old ransomware detection tools or proposals. We col-
lected network traffic because it helps in obtaining most of
the information required by the detection tools. We found
at least seven detection tools that cannot operate without
accessing the network traffic from the ransomware, because
it is required by the detection process (see [9]). Moreover,
most detection tools use information from the file I/O oper-
ations, which we can extract from network traffic because
the attacked files are placed in a network shared directory.
We have developed specialised software for extracting the I/O
operations from the traffic trace, making our repository useful
for most of the existing detection tools.

Table 3 presents 29 detection tools and the parameters used
for detection. The last column indicates whether the tool can
be tested using the data in the repository.

Some tools base detection only on network parameters
(column Network in Table 3), such as DNS requests [3], DNS
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TABLE 3. Detection tools and parameters used.

domain names generated by DGA [24], general traffic [4],
and SMB traffic [49]. The traffic traces provided in the repos-
itory can be used to fully test these tools.

Other tools are based on the analysis of parameters
obtained locally at the infected machine, such as the fre-
quency of read and write operations [27], [28], [34],
the number of files encrypted [6], [39], and the file data
entropy [36], [50]. These parameters can be obtained by
intercepting system calls used for file access. The repository
provides a file for each trace containing the I/O operations.
File data entropy cannot be computed from this I/O operations
file, because it contains only the metadata of the operations;
however, all the data accessed (read or written) are present in
the traffic trace (as the user accessed all files in the directory
and the data were captured), so these tools can be fully tested.

Some tools use the presence of certain function calls, their
frequency, and/or the use of cryptographic primitives for
detection (column function calls in Table 3). We do not offer
this information yet; however, only four tools base their detec-
tion exclusively on these parameters. Most tools that analyse
system function calls or the cryptographic primitives com-
bine them with other parameters, like file extensions [5], I/O
operations [7], [30], [37], and data access information [48].

In these cases, the repository can be used to test the influence
of each parameter except the function calls (these detection
tools are labelled as partially testable in Table 3). Therefore,
the repository is useful for testing themajority of tools present
in the literature.

Finally, two tools [7], [8] analyse the binary of the malware
file, in addition to other parameters, to detect the ransomware.
We provide a link to the security-related web pages from
which we obtained the binary samples; therefore, these tools
can be tested using information that is available outside the
repository, and they are labelled as partially testable.

VI. CONCLUSION
In this paper, we have presented a public repository con-
taining the activity of more than 70 samples of ransomware,
which were acquired while the ransomware was encrypting
user files. The samples were collected over 5 years and
the repository is still being updated. At the date of writ-
ing, the repository contains more than 1 TB in 206 traffic
traces. The computing and networking scenarios in which the
samples were run were aimed to emulate a corporate environ-
ment with shared documents in a workgroup. This proved to
be appropriate not only for providing a realistic environment,
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but also for simplifying the running of the samples in different
network conditions or disk access speeds.

The traces provided in the repository were used to test
the ransomware detection tool presented in [49], and now
other authors can benefit from these samples. We encourage
their use for comparing performance results of ransomware
detection algorithms; for this purpose, we have classified the
existing detection tools according to whether they can be
fully or partially tested using these data. We found that more
than 86% of the tools can be at least partially tested, based
either on network traffic or on the ransomware activity over
user files. For easier data handling, besides the traffic capture
files, the repository offers text files containing all the I/O
operations performed on the user documents by the infected
host. This information was extracted from the raw capture
files.

Finally, we have presented two examples of the analysis of
ransomware activity using the public data in the repository
to show its possibilities. Using the exported I/O operations
list, we could reveal different activity patterns in the two
selected ransomware samples. These patterns influence the
effectiveness of some detection techniques.

Ransomware samples can become deactivated because
their C&C servers are taken down, therefore making it impos-
sible to test new detection tools against their behaviour. The
data provided in this repository can help the testing phase of
new tools against old behaviours, which could appear again
in new malware. The aim of this study was to contribute to
the development of new ransomware detection tools not only
by offering new algorithms, but also by making the testing
process easier and comparable, as the collection of samples
is always complicated.
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