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A B S T R A C T

Crypto ransomware is a type of malware that locks access to user files by encrypting them and demands a ransom
in order to obtain the decryption key. This type of malware has become a serious threat for most enterprises. In
those cases where the infected computer has access to documents in network shared volumes, a single host can
lock access to documents across several departments in the company. We propose an algorithm that can detect
ransomware action and prevent further activity over shared documents. The algorithm is based on the analysis
of passively monitored traffic by a network probe. 19 different ransomware families were used for testing the
algorithm in action. The results show that it can detect ransomware activity in less than 20 s, before more than
10 files are lost. Recovery of even those files was also possible because their content was stored in the traffic
monitored by the network probe. Several days of traffic from real corporate networks were used to validate a
low rate of false alarms. This paper offers also analytical models for the probability of early detection and the
probability of false alarms for an arbitrarily large population of users.

1. Introduction

Ransomware is a type of malware that extorts computer users by
locking access to their computers (lockscreen ransomware) or lock-
ing access to their files by encrypting them (encryption ransomware,
crypto ransomware or cryptoware). During 2016, Europol declared
that encrypting ransomware had become “the most prominent malware
threat […] for citizens and enterprises alike” (EUROPOL, 2016).

Cryptoware is now recognised as the most profitable malware type
in history (Cisco Systems, 2016) and hundreds of millions of dollars are
estimated to be extorted to users every year (Symantec Corporation,
2016). A survey conducted in 2016 with 290 organizations from dif-
ferent industries in the United States, Canada, Germany and the United
Kingdom found that nearly 50% of them had been victims of a ran-
somware attack during the previous 12 months (Osterman Research
and Inc., 2016). Around 40% of the targets declared having paid the
ransom. However, even if the organization pays the ransom, there is no
guarantee that it will recover the files.

Not only local files to the infected computer are encrypted. Most
organizations employ volume sharing protocols with networked disk
arrays in order to make documents easily accessible to the users. All
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the documents could be in shared volumes, helping the backup proce-
dures and allowing for user profile mobility and team work. However,
this also makes them more vulnerable as the shared volumes are usu-
ally reachable from any infected computer in the organization. Recent
ransomware incarnations include a worm behaviour that tries to spread
the infection as much as possible through the local network, to comput-
ers reachable through Virtual Private Networks (VPNs) or to random
targets in the public Internet (Selvaraj et al., 2017; Lee et al., 2017).
Therefore, upon infection discovery the organization must usually stop
business until its systems are cleaned and backup images are restored
(Mathieu Rosemain and Le Guernigou).

In a volume sharing scenario a single infected host could encrypt a
whole networked volume (Sjouwerman, 2017), with a global impact
on the organization business. The files must be recovered from the
most recent backup. Nightly backups are a common policy (Osterman
Research and Inc., 2016) and the main recovery mechanism from a ran-
somware attack. They are easier to implement in scenarios with central-
ized volumes shared through a network. Upon suffering a ransomware
infection, as much work time is lost as it took to detect the intrusion,
because all the documents modified from the previous backup are only
in the encrypted volumes. Including the IT (Information Technologies)
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personnel work-time for the recovery from the backups, at least 8 h
of work per employee are usually lost (Osterman Research and Inc.,
2016), and more time could be spent in order to put all the business
back on track. If the event reaches the media, the organization must
also account for the damage to its public image. Finally, financial and
healthcare services are the most frequent and lucrative targets. When
the latter are targeted (Cisco Systems, 2016; Lee et al., 2017), losses of
lives due to delays in treatments or incorrect medications being admin-
istered could result.

Long delays in upgrading or applying critical software patches in
these organizations offer great opportunities for attackers. This was the
case in the “SamSam” ransomware campaign that affected JBoss servers
in the Healthcare industry (Cisco Systems, 2016), as in the recent (May
2017) and extensive “WannaCry” infection (Selvaraj et al., 2017; Lee
et al., 2017). These delays are due to the operational costs incurred by
each update, as any change must be validated against all the software
used in the organization, and deployment of the patch must be planned,
usually disrupting work.

In this paper we present REDFISH (Ransomware Early Detection
from FIle SHaring traffic), a framework for the detection and blockage
of ransomware action when it tries to encrypt files contained in shared
network volumes from a NAS (Network Attached Storage). This is a very
frequent but unsolved scenario for present malware detection tools. We
focus on network volumes shared using Server Message Block (SMB)
protocol as it is the most common scenario in an office environment,
however, the procedure could be exported to other volume sharing pro-
tocols. Our approach does not require the installation of software on
any end-host, contrary to the common procedure in an anti-malware
software deployment (Continella et al., 2016; Kharraz and Kirda, 2017;
Scaife et al., 2016). We show that a network traffic inspection device
can analyse traffic to the shared volumes and detect ransomware activ-
ity using behavioural patterns. This device and its updates are easier to
deploy than updating the whole set of computers in an organization. It
monitors every access to the shared volumes and it can program rules in
an SDN environment for blocking traffic to the protected volumes from
any computer that it detects to be infected. A network traffic inspection
device can work outside the traffic path, analysing a copy of the packet
traffic, received through a switch port mirror (see Fig. 1). Therefore, it
does not introduce any extra delay to the user actions and as it is not
installed on the user computer it is not vulnerable to being uninstalled
by any malware.

We ran our experiments using more than 50 samples from 19 dif-
ferent ransomware families. All the samples were successfully detected.
The results show detection times below 20 s. In more than a 99% per-
cent of the detections, at most 10 files were encrypted before the alarm
was raised and access from that computer to the volume could be
blocked.

The main contributions of this paper are:

Fig. 1. Networking scenario. The traffic between the hosts and the NAS is repli-
cated from a switch into the traffic analysis probe.

• Present a ransomware detection algorithm based on the analysis of
network traffic to shared volumes. Shared volumes is the most com-
mon deployment in a corporate environment but no previous pro-
posal has targeted this specific scenario.

• Validate the detection algorithm with 19 different families of ran-
somware and traffic from corporate networks with thousands of
users. We avoid false positives (raising an alarm when no ran-
somware is present) by tuning the algorithm parameters to the typ-
ical behaviour of users and computer programs.

• Provide and validate analytical model approximations for the algo-
rithm success and failure rate.

• Describe a network traffic analysis tool deployment capable of
detecting ransomware infection without any software installation at
the end-hosts and adding no delay to user actions. The architecture
allows also easy deployment of file recovery tools that from nightly
backups and network traffic can reconstruct file status before its
encryption and destruction.

The remainder of this paper is organized as follows: section 2
describes the previous works in the literature on ransomware detec-
tion; section 3 describes the scenario of network shared volumes and
the traffic traces used in the analysis. Section 4 describes the algorithm,
selects the best configuration for fast and effective ransomware detec-
tion and presents analytical models for its analysis. Section 5 compares
the results using traffic traces from different user scenarios; section 6
discusses the advantages and disadvantages of the proposed solution
and section 7 concludes the paper.

2. Related work

Modern crypto-ransomware infections started in 2013 with Cryp-
toLocker using public-private key cryptography (Ahmadian et al.,
2015). It became a global problem in 2016, when more than 1,400,000
Kaspersky users were attacked, most of them by “Locky” and “CTB-
Locker”. About 22.6% of those users were in the corporate sector
(Kaspersky Security Bulletin, 2017). In 2017, “WannaCry” ransomware
infected in one day 400,000 machines in more than 150 countries,
including the United States and China (Crowe). The adaptation of
malware (Scaife et al., 2016) in order to avoid detection has made
signature-based detection techniques obsolete (Vidal et al., 2017). They
require frequent updates of the malware fingerprints database, and
they are incapable of dealing with zero-day infections (Nieuwenhuizen,
2016). The research on ad-hoc ransomware detection procedures has
offered in that period several alternatives with better or worse success
rates.

Detection techniques capable of coping with 0-day ransomware
attacks try to recognise the malware based on more general charac-
teristics than basic software signatures. Some detection frameworks
search for encryption primitives in malware code in order to block it
or at least warn the user (Kolodenker et al., 2017). In Continella et
al. (2016) the authors try to find the expanded AES encryption key
in the process memory. This procedure is valid only for ransomware
using this symmetric block cipher, although the authors comment that
it could be extended to other ciphers. Solutions like the one presented
in Kolodenker et al. (2017) try to store all the possible encryption keys
being used by any program, therefore, if one of the programs was a ran-
somware the files could be restored. They require the dynamic inspec-
tion of cryptographic calls used by the process. All these alternatives
could produce false positive detections for normal encryption software,
they take CPU time from the user host and they could fail when the
ransomware uses different encryption libraries and algorithms.

The use of decoy files or canary files is a completely different alter-
native (CryptoStopper, 2017; Feng and Liu, 2017). In those scenarios
the anti-ransomware software monitors the modification of files cre-
ated across the volume. Those files are not user-created documents,
therefore no modifications are expected, however, the ransomware will
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probably try to encrypt those files. When the ransomware deletes one
of those canary files, it is detected by the anti-malware tool. This pro-
cedure requires monitoring a large amount of files if it wants to detect
the malware before many user files are lost, as it cannot guarantee that
the ransomware will attack the canary files first. It is also vulnerable
to ransomware samples that avoid those files; they could, for example,
encrypt first the most recently used files or those from the recent files
list in some common applications.

The proposal of using canary files is a precursor and simpler version
of the detection frameworks based on monitoring any disk access by
user programs. Ransomware activity can be detected based on statis-
tics like the amount of read, written and/or deleted files, the access to
many different file types, the search through a large quantity of direc-
tories and the creation of files with a much larger entropy than the
original file, which is an indicator of possible data encryption. Recent
proposals using this approach are (Kharraz and Kirda, 2017; Scaife et
al., 2016; Kharraz et al., 2016; Shukla et al., 2016). All these papers are
based on Microsoft Windows drivers that intercept I/O (Input/Output)
system calls and analyse patterns, using simple linear combinations of
measured indicators (Kharraz and Kirda, 2017) or using machine learn-
ing techniques (Defeat Ransomware). These algorithms produce good
detection results, for example the one presented in Kharraz and Kirda
(2017) has 100% ransomware detection rate with 0.8% of false posi-
tives (cases where it triggers an alarm when only benign applications
were running). However, they take a toll on host performance, with
CPU usage in the range of 2.8%–9% depending on the implementation.
They produce false positive detection when the user takes actions sim-
ilar to what a ransomware would do, creating files with high entropy
(e.g. compressed files) and deleting files. They are also vulnerable to
malware that escalates privileges and uninstalls detection tools (Con-
tinella et al., 2016).

Solutions based on network traffic analysis can be deployed on the
end-host but also on firewalls or network traffic analysis probes. When
installed out of the hosts they are solutions less vulnerable to being
removed by the ransomware and they do not consume user computer
resources. The traffic they use to detect the ransomware action is the
communication that it requires with its command and control (C&C)
servers in order to obtain the key for file encryption. This detection
procedure fails in case of encryption with a local key without con-
tact to any server; however, those strains of ransomware are infre-
quent nowadays as they contain the decryption key, which could be
extracted by a skilled software analyst. Some ransomware strains try
to hide their network traffic by accessing compromised web servers
as a proxy to reach their C&C servers. They can be blocked using a
list of addresses, which must be frequently updated (Cabaj and Mazur-
czyk, 2016; Umbrella, 2016). Some ransomware strains try to contact
servers using DNS names generated by a DGA (Domain Generation
Algorithm) which makes black-listing useless. In Ahmadian et al. (2015)
the authors present heuristics for detecting these randomly generated
names, however they must adapt their algorithm to many languages in
order to detect randomly generated domain names without false posi-
tive alarms; moreover, they are vulnerable to generated domain names
that are not random but dictionary based.

Commercial anti-virus solutions like (Defeat Ransomware;
Umbrella, 2016) try to characterize network traffic using machine
learning techniques in order to rise alarms in case of abnormal
behaviour. They are prone to false positive detection and therefore
they are not typically configured for automatic application blockage
and require user validation (Defeat Ransomware), which increases the
window of opportunity for ransomware action.

Finally, proposals like (Continella et al., 2016; Kharraz and Kirda,
2017; Shukla et al., 2016; Sophos Intercept X, 2017) intercept file
access system calls and offer the added functionality of storing the
original version of the files as well as any user modifications. They pro-
vide the capability of restoring the original file in case of encryption.
However, they are vulnerable to uninstallation by ransomware getting

administrator privileges, and they take CPU and hard disk resources.
The above-mentioned methods try to detect a ransomware when

it is encrypting files in the user’s computer. However, in most
enterprise productivity deployments user documents are located in
central network shared volumes (Eurostat Statistics Explained). They
can be documents shared by groups of users or even the whole set
of documents from a user for allowing mobility among hosts. The
centralization offers better storage utilization with higher quality disks,
group sharing capabilities, easier maintenance and simpler periodic
backups. In fact, most enterprises hit by ransomware recover their
documents thanks to nightly backups (Osterman Research and Inc.,
2016). However, the same centralization and sharing opens the door to
a single infected computer encrypting lots of documents with effects on
many company departments. Locally installed malware detectors could
prevent ransomware from encrypting network shared volumes, how-
ever, they require installation and updates on the whole set of company
computers. As far as we know, no previous work has tried to detect ran-
somware action based on the traffic to a NAS system. In this paper we
show how a single network probe can detect and stop any ransomware
by the analysis of traffic to a network file server. Tens of gigabits
per second of sustained traffic are supported, adding file recovery
capabilities in order to reduce ransomware impact to a minimum.

3. Network scenario

In a LAN (Local Area Network), NAS volumes are usually enterprise-
class disks shared using one or more network protocols over the Internet
Protocol (IP). The applications are installed in the local hosts and only
the documents are stored in network volumes. We center our case on
volumes that store exclusively shared user documents, which can be
modified frequently or rarely, but always by user actions. They could
be spreadsheets, text documents, images, presentations, etc. We assume
that guarded volumes do not contain application configuration files,
user profiles, mailboxes, etc. Those are directories that suffer frequent
file deletions due to normal application behaviour, but they are not
critical.

The algorithm presented in this paper is based on analysing the IP
traffic to the NAS appliance. We can get access to this traffic through
several monitoring techniques. The algorithm could be implemented
in an on-path firewall; however, it would incur in some processing
delay (Lin and Lee, 2013). In order to avoid any delay to user traffic
we propose an off-path deployment. In an enterprise network, Ethernet
switches offer the capability of port mirroring, i.e. duplicating traffic
from a network port to another port (SPAN or mirror port) where an
analysis probe running REDFISH would be connected. This is the sce-
nario depicted in Fig. 1. It is an off-path deployment where no extra
delay is added to the traffic by its analysis (traffic mirroring is imple-
mented in hardware switches at line rate).

Finally, being off-path, the probe cannot block traffic from an
infected host as a firewall could, however, it can program discarding
rules in an SDN-enabled switch, obtaining the same result.

3.1. Network storage traffic

In a NAS environment, volume access is provided at the file level,
being the server called a filer. The protocols used are nowadays almost
exclusively transported over TCP/IP and the most frequent are NFS
(Network File System), SMB (Server Message Block) and AFP (Apple
Filing Protocol). NFS is mostly deployed in the UNIX environment while
AFP is restricted to macOS computers. SMB, in its several versions
(SMB/CIFS, SMB2, SMB3), is the most common protocol for file shar-
ing in the Microsoft Windows environment. The popularity of Microsoft
Windows desktops makes ransomware more common for this operating
system, even though there are strains for GNU/Linux or even Android
(Liviu Arsene, 2016; Emm et al., 2016). In this paper we focus on net-
work traffic to shared volumes using the SMB protocol. This is the
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default sharing protocol for all versions of Microsoft Windows, which
is the de-facto desktop operating system in most companies. However,
the proposed algorithm for ransomware detection does not require any
feature specific to SMB protocol and it could be easily extended to other
network file access protocols and versions.

In a NAS environment, SMB is transported over a TCP connection
between the user’s PC and the filer, using port 445 at the latter (IANA).
It is a binary protocol with at least 75 different commands in its ver-
sion 1 and 19 in its version 2. The most frequent protocol behaviour
is a request-response one, although asynchronous notifications do exist
(Microsoft Corporation).

We analysed host behaviour on opening, reading, writing and delet-
ing shared files. The proposed algorithm is based on the differences
between the traffic from an infected and a not infected host. Some
locally installed ransomware detection proposals (Continella et al.,
2016; Kharraz and Kirda, 2017; Sgandurra et al.,; Kharraz et al., 2015)
intercept disk access API (Application Programming Interface) calls and
can distinguish which program is responsible for each file access. The
SMB protocol traffic does not offer an identification of the application
that originated a file request, therefore we can only distinguish between
accesses from different hosts.

Each host client maintains a TCP connection with the server. In
case of disk array controllers that offer virtual volumes using different
IP addresses, a single host could maintain several TCP connections,
one for each server IP address. The algorithm proposed in this paper is
based on the analysis of SMB/SMB2 traffic in a single TCP connection.
When a single host maintains several connections or there is more
than one client or server, the analysis is done in parallel for each TCP
connection. In fact, we present results from the analysis of traffic traces
with thousands of concurrent SMB sessions. The scalability results
presented in section 6 show that a single CPU core on an analysis probe
can process 10 Gb/s of this traffic. This is the scenario of an enterprise
class dedicated file server for a large company.

{Th}e analysis of SMB traffic in the probe extracts the protocol com-
mands. On the following we describe the SMB2 commands (Microsoft
Corporation) that will offer most information to the ransomware
detection algorithm. SMB2 is used from Microsoft Windows Vista to
Windows 10.

• SMB2 CREATE [Request or Response]: The request command is sent
by the client in order to create a file or get access to it. The response
message contains the file size, which will be useful in order to detect
write commands that overwrite existing data.

• SMB2 READ [Request or Response]: The request command is sent
by the client in order to initiate a read operation on an opened file.
It contains the amount of bytes to read and the file offset where the
operation should begin. The response message contains the bytes
read.

• SMB2 WRITE [Request or Response]: The request command is sent
by the client in order to initiate a write operation on an opened file.
It contains the bytes to write and the file offset where the operation
should take place. The response message contains the amount of
bytes written.

• SMB2 SET INFO [Request or Response]: Among other options, the
request command can be used to mark a file for deletion. The file
will be deleted when all handles to the file are closed (Microsoft
Corporation).

• SMB2 CLOSE [Request or Response]: The request command is used
by the client to close an instance of a file that was opened with a
CREATE Request.

Our prototype implementation supports also SMB/CIFS (SMB ver-
sion 1). SMB1 is commonly used in Microsoft Windows XP systems.
The commands have a similar purpose but for brevity we omit their
description.

3.2. User behaviour, ransomware behaviour and infected datasets

We have used two types of traffic traces:

• SMB traffic from enterprise offices where no ransomware was in
action. We used these traces in order to tune the algorithm for a low
false positive behaviour. This means not triggering the alarm when
no ransomware is active. We also used these traces to estimate the
probability of false alarms triggered by the algorithm.

• SMB traffic from cases of ransomware encrypting files in network
shared volumes. We used these traces in order to measure how early
the algorithm could detect different strains of ransomware and the
amount of files that should be recovered from backups.

In the following subsections we describe the scenario where each
traffic trace was obtained and their macroscopic characteristics.

3.2.1. Traffic traces for not infected scenarios
We have been capturing traffic from the Public University of

Navarre Internet access link since 2006. We have extended this capture
to links from a NAS filer, used internally by most of the non-academic
staff. This is a scenario with thousands of office users, hundreds of
which access simultaneously the volumes shared from a NAS. All non-
SMB traffic has been removed from the traces. We have used an 8 h
long traffic capture for the algorithm parameter tuning phase. We call
this trace the Campus0 trace in Table 1. Afterwards, we have validated
the results using 6 traces, each one 24 h long, from the same scenario
(from Campus1 to Campus6 traffic traces). We have extended the vali-
dation using a traffic trace captured in an office environment in a large
company (Private). We present all the validation results in section 5.

Table 1
Traffic traces from not infected scenarios.

Campus0 Campus1 Campus2 Campus3 Campus4 Campus5 Campus6 Private

Place University University University University University University University Large company
Date 2017-01-16 2017-02-22 2017-02-23 2017-02-24 2017-02-27 2017-02-28 2017-03-01 2015-04-24
Duration 8h40min 24 h 24 h 24 h 24 h 24 h 24 h 24 h
Size (Gbytes) 212 469 352 333 383 355 714 1100
Total SMB connections 46609 45414 43716 34864 42593 42162 43543 2717091

Stats for connections longer than 5 min that do READ and WRITE SMB operations
SMB connections 401 424 391 375 362 369 386 21764
Client hosts 330 327 320 306 302 306 313 4882
Server hosts 1 1 1 1 1 1 1 1677
Avg. Connection duration (hours) 5.93 5.43 5.70 5.60 5.97 5.86 5.86 3.5
Files opened per connection 7640 9437 8589 6115 12224 7717 7870 1863
Mbytes read per connection 91.4 68.6 75.6 65.3 94.9 69.8 82.5 18.4
Mbytes written per connection 294.19 295.6 288.97 237.9 315.1 307.5 306.1 5.2
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We show some basic statistics for these traces in Table 1. We have
removed any connection that does not contain READ and WRITE SMB
commands, as there is no file manipulation in them.

3.2.2. Traffic traces for infection scenarios
We have obtained ransomware samples from Hybrid Analysis and

Malware Traffic Analysis. They were uploaded by different users and
tagged as ransomware by antivirus tools. Table 2 lists the samples
grouped by families. The naming of the samples comes from the same
source as the binary files and it cannot be considered entirely reli-
able, as documented in previous papers (Canto et al., 2008). However,
every sample used has been checked for ransomware activity encrypt-
ing files.

For running the samples we created a virtualized Windows 7 deploy-
ment using a host with an Intel Core 2 Duo CPU E6750 running at
2.66 GHz. We ran a VM (Virtual Machine) acting as the infected user
(client) and a second VM acting as the SMB filer (server). The traf-
fic between the VMs is captured in a pcap file while the ransomware
is running. This emulates the traffic capture done by the analysis
probe.

We have created a random file population in the filer. We recover
from a snapshot the VM and the volume containing the documents for
every new test. For the oldest ransomware samples we used a file popu-
lation of 1916 files with an aggregated size of 1.88 GB and a maximum
file size of 25.6 MB. For the most recent samples (since March 2017)
we have used a larger file population whose sizes are obtained from
a lognormal distribution with a Pareto tail. This model for file sizes
and directory structure is described in Agrawal et al. (2009) and it was
obtained from a dataset of over 60,000 Windows computer file system
images in a large corporation. We used the default parameters recom-
mended in that paper. The directory structure is also random, imitating
a real file-system. The resulting new dataset contains 5138 files with
an aggregated size of 5.3 GB, files of a maximum of 838 MB and a tree
depth of 8 directories.

Table 2 shows a summary of the more than 50 ransomware sam-
ples obtained, clustered in 19 families. Each sample represents a dif-
ferent binary file, run for encryption of the files in our random pop-
ulation. Previous works like (Kharraz and Kirda, 2017; Scaife et al.,
2016) present results with hundreds of samples, however, not every
ransomware sample encrypts files in network shared volumes. We have
removed any sample that does only encrypt local files. This is the reason
why famous ransomware families like “TorrentLocker” and “Matrix” are
not present in the experimental results. Other ransomware families are
not active any longer due to the removal of their C&C servers, so no
further experimentation with them is possible.

From the analysis of the traffic between the infected host and the
filer we have recognised 3 types of general behaviours in the samples:

• Type I - The malware reads the original file, it creates a new file
with a different name or extension and it writes in the new file
the encrypted content from the original one. Finally, it deletes the
original file and proceeds to the next one.

• Type II - It is similar to type I but the encrypted content is written
over the original file, not in a new one.

• Type III - It is similar to type II but after overwriting the content
it renames the file, adding an extension specific to the ransomware
strain

This classification is similar to the one offered in Scaife et al. (2016),
but we have a different view of the ransomware behaviour. We analyse
the ransomware from the network traffic it creates instead of having
access to I/O disk access system calls.

After analysing the traffic generated by each of these samples of
ransomware in action we extract the following common characteristics:

(A) It must read files. This is necessary in order to create the
encrypted versions.

(B) It must write files, with a similar amount of bytes to those read.
These are the encrypted files. They can be newly created files or
it can overwrite existing ones.

(C) It must destroy information, either deleting or overwriting files.
(D) Read and write actions will be close in time. They could even be

in parallel.
(E) It tries to do the read, write and delete actions fast.

We have witnessed the above-mentioned behaviour in all the sam-
ples we have analysed. Crypto-ransomware can not avoid any of the
these characteristics. Reading the files and writing a similar amount of
bytes for the encrypted versions is obviously unavoidable (character-
istics A and B). It must also delete the information in disk (C) or else
there is no point in asking for a ransom. Read and write actions must
be close in time (D) because in between the malware is encrypting the
data. Both actions can be separated in time if the affected file is large
but only to the extent of the available RAM. Finally, if the ransomware
were not doing these actions fast (characteristic E) it would not delete
many files before a periodic backup takes place, therefore losing much
of its impact.

4. Ransomware detection algorithm

We have revised the literature on methodologies for ransomware
detection, in order to possibly adapt previous proposals to the network

Table 2
List of ransomware samples.

Family Versions Date of appearance behaviour type Number of samples

VirLock VirLock December 2014 I 1
CTBLocker CTBLocker v4.0 January 2015 I 3
Teslacrypt TeslaCrypt v3.0 February 2015 III 1
TorrentLocker CryptoFortress March 2015 III 1
DMALocker DMALocker January 2016 III 1
Locky Locky v1.0, Aesir, Odin, Osiris, Diablo6 February 2016 III 10
Cerber Cerber v2.0, v4.0, v4.1.6, v5.0, v4.1, Red Cerber March 2016 III 15
CryptXXX CryptMIC v5.001 April 2016 II 1
Bart Bart v2.0 June 2016 I 1
CryptoMix CryptFile2 June 2016 I 10
Crysis Crysis, Dharma November 2016 III 1
Sage Sage v2.0 December 2016 III 1
MRCR MRCR1 December 2016 III 1
Spora Spora January 2017 II 1
WannaCry WannaCry v2.0 February 2017 I 2
BTCWare Aleta March 2017 III 1
Jaff Jaff June 2017 III 1
Globe GlobeImposter v2.0 June 2017 III 1
Zeus Zeus May 2018 I 1
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shared volumes scenario. In this section we describe their parameters
and applicability. Afterwards, we present the new algorithm we propose
(REDFISH) and we adjust its parameters, based on a training scenario.
Finally, we describe analytical models for both the successful detection
and false positives from the algorithm.

4.1. Parameter selection

Table 3 shows the main proposals in the literature and the input
parameters they use for ransomware detection. Most of them deploy
the detection software locally on the possibly infected computer. They
analyse the ransomware behaviour locally. Some of them take as input
parameter the network traffic from the host, but we could not find any
work on the literature about detecting ransomware action based on the
traffic to network shared volumes.

This is the meaning of the columns in Table 3:

• File content: Methods based on file content require access to the
byte values read and/or written. They usually compare the original
content to the new values overwriting the file. They could also use
entropy calculations in order to recognise possibly encrypted con-
tent.
File sharing protocols are a network implementation of
Input/Output (I/O) system calls, therefore their traffic offers
the file content when the user reads or writes a file. However,
we do not consider this parameter for three reasons: a) entropy
computation increases the CPU load on the analysis probe, b)
entropy increments could be very small if the original file was
already encrypted or compressed and c) comparing old and new
file content requires a large memory footprint and time consuming
searches. This kind of file content analysis in real time at 10 Gb/s or
larger speeds is expensive, so any proposal that requires file content
analysis is discarded.

• I/O calls: The anti-malware software inspects all the disk-related sys-
tem calls used by the programs. The analysis software knows when
a file was opened or closed, its file path, when bytes were read or
written, etc, but no access to the file content is required.
A traffic monitoring probe that tracks network file sharing protocol
messages has access to this kind of information.

• API (Application Programming Interface) calls: The anti-malware
software inspects function calls used by suspected ransomware pro-
grams. The suspicious functions are usually related to cryptographic
operations.
A traffic monitoring probe has no access to function calls local to
the host. Any proposal that requires inspecting software behaviour

different from disk access must be discarded in the present scenario.
• File stats: The detection algorithm bases its decision on the file

extensions in files created by the ransomware, the file extensions
in files it accesses (amount of different extensions and values), etc.
The detection uses meta-data about the files accessed by the ran-
somware.
This information is available in the file sharing network protocol.

• Canary files: Special files are created in many directories. The anti-
malware software monitors any access to these files. A user will not
touch those files but ransomware software will try to encrypt them.
A network monitoring probe could detect when a canary file is
accessed. However, the procedure of creating the canary files in
the file sharing volume is not straight forward to implement in the
probe. All the proposals that use canary files ((Kharraz et al., 2015;
Feng and Liu, 2017)) use also the analysis of API calls, therefore all
of them are discarded.

• Binary analysis: The anti-malware software analyses the binary of
the program to run, searching for strings or specific function calls.
This information is not available in any network traffic.

• Network: Control traffic is analysed in order to detect the ran-
somware. Some methods monitor DNS resolution requests to spe-
cific black-listed domains ((Cabaj and Mazurczyk, 2016; Hasan and
Rahman, 2017)), they try to detect dynamically generated domain
names (Ahmadian et al., 2015; Quinkert et al.,) or they try to recog-
nise the exchange of messages and encryption keys with the com-
mand and control servers ((Lu et al., 2017; Hasan and Rahman,
2017)).
In order to monitor Internet traffic (DNS, traffic to command and
control servers) the probe requires access to this traffic. This requires
a complex probe deployment in some scenarios, compared to just
installing the probe close to the file server. In some scenarios it is
almost impossible to accomplish this deployment, for example when
the users are spread through hundreds of remote offices and their
Internet traffic does not use a single network link.

From this analysis we see that any method based on file content, API
calls, canary files or binary analysis must be discarded. Those are the
methods that check one or more of the first four columns in Table 3.
Only (Cabaj and Mazurczyk, 2016; Quinkert et al.,) are left, however,
network traffic information in these papers refers to Internet traffic,
which is not available in the scenario under analysis.

I/O calls and file stats are the basic information accessible from the
traffic with the file server. Every ransomware we have observed reads
the contents of files and writes the encrypted version in a different file
in the same directory or over the original content in the same file. We

Table 3
Parameters used in the literature.

Method File content API calls Canary files Binary analysis I/O calls File stats Network

N. Scaife et al. (2016) ✓ ✓
A. Kharraz et al. (2015) ✓ ✓ ✓
D. Sgandurra et al. ✓ ✓ ✓ ✓
F. Mbol et al. (2016) ✓
A. Continella et al. (2016) ✓ ✓ ✓
M. Shukla et al. (2016) ✓ ✓ ✓
A. Kharraz and Kirda (2017) ✓ ✓ ✓
R. Vinayakumar et al. (2017) ✓
M. Alam et al. ✓
M. M. Ahmadian and Shahriari (2016) ✓ ✓
Y. Feng and Liu (2017) ✓ ✓
K. Cabaj and Mazurczyk (2016) ✓
M. M. Ahmadian et al. (2015) ✓ ✓ ✓
F. Quinkert et al. ✓
A. Kharraz et al. (2016) ✓ ✓
H. Kim et al. (2017) ✓ ✓
E. Kolodenker et al. (2017) ✓ ✓
T. Lu et al. (2017) ✓ ✓ ✓ ✓
M. M. Hasan and Rahman (2017) ✓ ✓ ✓ ✓
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Table 4
Parameters used in REDFISH algorithm.

Parameter Units Explanation

N Minimum number of files deleted
T seconds Maximum time interval containing N deleted events
Vthres bits per second Minimum average read and write speed

will detect ransomware activity based on the destruction of information
or the removal of several files in the same period as an intensive bidi-
rectional (read and write) disk access activity is measured. The destruc-
tion could come from a delete command or from overwriting the data.
We will refer to both cases as a deletion event. The parameters in the
algorithm (Table 4), computed from the I/O calls in the file sharing
protocols, are:

• N: The minimum number of files deleted in order to trigger the
alarm. It must be a small value in order to detect ransomware activ-
ity before a large amount of files is deleted, which could incur in
more work for their recovery (see section 6 about file recovery).
However, if N is too small, the algorithm could confuse normal user
action with ransomware activity.

• T (seconds): All the removal events must take place in a time interval
of T seconds. Ransomware is expected to delete files quickly, so
short values of T will be adequate.

• Vthres (bits per second): During the time interval with the N deletion
events the throughput reading and writing files must exceed this
average speed.

In the following subsections we present the details of the algorithm
operation and provide values for parameters N, T and Vthres in order to
achieve 100% ransomware detection.

4.2. Definitions for algorithm description

As a general framework, let {𝜌i}, i ∈ ℕ be the discrete-time contin-
uous random arrival process for the events of file read operations; {𝜔i}
is a similar process for the write operations and {𝜏 i} for the events of
file deletion. A deletion event takes place at the time instant when a
file handler is closed for a file where some data was overwritten or a
deletion command was issued. We assume that two events cannot take
place at exactly the same time. This is always true from the traffic mon-
itor point of view as traffic is received in a serialized manner through
the port mirror.

REDFISH algorithm processes the above mentioned events in a time
sequential manner. For the file deletion events random process we also
define the interarrival time process {tk} where tk = 𝜏k+1 − 𝜏k, k ∈ ℕ.
We will use this last definition for the analytical model in the following
sections.

For each read, write or delete event we can associate a file system
path where the affected file was located. We extract this path from the
SMB CREATE command when the file is opened, excluding the file name
and extension. We name p𝜌i

the path for the file where a read operation
took place at 𝜌i. In an analogous way we define p𝜔i

and p𝜏i
. We call Q

the set of all possible file system paths. We assume all operations are
from the same shared volume.

We define b𝜌i
and b𝜔i

as the amount of bytes in a corresponding read
or write operation. For each file system path p we define Pp(t) (equation
(1)) as the cumulative amount of bytes read from files contained in that
directory (not in subdirectories). In a similar manner we define Ωp(t)
(equation (2)) for the written bytes.

Pp(t) =
∑

i
b𝜌i

,∀i ∈ ℕ ∣ 𝜌i ≤ t and p𝜌i
= p Pp(0) = 0,∀p ∈ Q (1)

Ωp(t) =
∑

i
b𝜔i

,∀i ∈ ℕ ∣ 𝜔i ≤ t and p𝜔i
= p Ωp(0) = 0,∀p ∈ Q (2)

For the whole filesystem (the network shared volume) we define
P(t) and Ω(t) as the cumulative amount of bytes read or written in the
volume (equations (3) and (4)).

P(t) =
∑
∀p∈Q

Pp(t) (3)

Ω(t) =
∑
∀p∈Q

Ωp(t) (4)

The amount of bytes read by the ransomware in a file system path
may differ from the amount written in the same path, but they should
be similar, as the encrypted versions of the files will have a similar
size to the original ones. In order to reduce the effect from the noise
created by normal read and write actions by the user we define mp(t)
as the minimum between the amounts of bytes read and written in
directory p (equation (5)). We also define m(t) as the minimum between
the amounts of bytes read and written in the whole volume (equation
(6)).

mp(t) = min{Pp(t),Ωp(t)} (5)

m(t) = min{P(t),Ω(t)} (6)

For the k-th deleted file (k ≥ N), the time interval comprising the
last N deletion events is ΔN𝜏k (equation (7)).

ΔN𝜏k = 𝜏k − 𝜏k−N+1 =
k−1∑

i=k−N+1
ti (7)

We compute V[k] (equation (8)) as an average speed of read&write
operation in the paths where those k files were deleted. V∗[k] is com-
puted as the average speed of read&write operations in the whole vol-
ume during those k delete operations (equation (9)). The set of paths
where those events took place is D = {p𝜏i

}, ∀i ∈ ℕ ∣ k − N + 1 ≤ i ≤ k.
The amount of bytes for the speed computations can be obtained from
the increments in m(t) and mp(t) for those paths. The time interval when
this activity took place goes from the first time mp(t) got an increment in
any of those paths until the last deletion event 𝜏k. We name 𝜏∗ the time
when this first increment took place. 𝜏∗ is the minimum value among
the time values 𝜂i when the corresponding mp𝜏i

(t) got incremented, for
any of the paths in set D (equation (10)).

V[k] =
∑k

i=k−N+1 (mp𝜏i
(𝜏k) − mp𝜏i

(𝜏∗))
𝜏k − 𝜏∗

(8)

V∗[k] =
∑k

i=k−N+1 (m(𝜏k) − m(𝜏∗))
𝜏k − 𝜏∗

(9)

𝜏∗ = min
k−N+1≤i≤k

{𝜂i}, k − N + 1 ≤ i ≤ k (10)

We can express 𝜂i as shown in equation (11). For each deletion event
𝜏 i the corresponding 𝜂i is the first timestamp when mp𝜏i

(t) increases
from the value at the previous deletion event 𝜏 j in the same path.

𝜂i ∈ ℝ ∣ 𝜂i < 𝜏i

p𝜏j
= p𝜏i

mp𝜏j
(𝜏j) < mp𝜏i

(𝜂i)

mp𝜏i
(t) = mp𝜏i

(𝜏j),∀𝜏j ≤ t < 𝜂i

(11)
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Fig. 2. Example of the increment in algorithm counters.

Based on these definitions, in the following subsections we describe
two detection algorithms and analytical models for the estimation of
detection and failure rates.

4.3. One-phase detection algorithm: REDFISH1

Benign applications that only read or only write files in the directory
will not increment mp(t). Ransomware increments both mp(t) and m(t)
substantially while encrypting user files.

REDFISH1 algorithm will raise an alarm when files are deleted but
only if two additional conditions are true.

The first condition requires the clustering of delete events in time.
If ΔN𝜏k > T then the events are too far apart to be consistent with ran-
somware action and an alarm will not be raised at 𝜏k. If ΔN𝜏k ≤ T then
enough events are clustered together, which could indicate ransomware
activity. This is the first necessary condition for raising the alarm.

We require a second condition, based on the speed reading and writ-
ing those files. If V[k] > Vthres then the alarm is triggered at 𝜏k.

Fig. 2 shows an example of the events and values during REDFISH1
operation with N=5. For clarity, all the deletion events shown take
place in the same file system path p. The vertical lines mark these
events. They take place when the file is truncated or when the file
handle is closed for a file that has been marked for deletion using the
SET INFO command or for a file whose content has been overwritten
(partially or totally). The time series mp(t) for the selected path is also
included in the figure. The time interval Δ5𝜏5 contains the last 5 dele-
tion events. The time when mp(t) increased its value from 𝜏0 is 𝜂1, also
included in the figure. In the example, an alarm is raised if:

𝜏5 − 𝜏1 < T and
mp(𝜏5) − mp(𝜏1)

𝜏5 − 𝜂1
> Vthres

If more system paths contain deletion events then they are included
in the computation of the amount of bytes read&written and also in
computing the beginning of the time interval using equations (10) and
(11).

We include a pseudo-code implementation of REDFISH1 (Algo-
rithm 1).

4.4. Two-phase detection algorithm: REDFISH2

The value of mp(t) increases only if the encrypted versions of the files
are created in the same path as each original file. This is the behaviour
we have witnessed in every ransomware sample we have obtained, and
it is unavoidable for any ransomware that overwrites the original file.
However, a new ransomware sample, aware of REDFISH1 algorithm,
could try to avoid detection by creating the encrypted file in a different
path, not increasing the value of mp(t) and therefore showing low values
of V[k]. This could result in undetected ransomware samples.

We must highlight that we have not found any ransomware sample
showing this behaviour. All of them overwrite the original file or create
a new one in the same path. However, we propose REDFISH2 in order
to cope with potential future ransomware samples that could choose
this strategy.

REDFISH2 is an extension to REDFISH1. It keeps the rules from
REDFISH1, therefore any ransomware detected by REDFISH1 will be
detected by REDFISH2 with the same efficiency. REDFISH2 adds a sec-
ond set of rules, executed in case of no detection with REDFISH1. It
detects ransomware samples that could be overlooked by REDFISH1
due to the same-path condition. To achieve this goal, it uses V∗[k].

V∗[k] provides the read&write speed from this user in the whole
shared volume. It is affected by processes that read files in a filesystem
path while other processes write files in a different path. Therefore,
it can result in a high rate of false alarms. In order to not increase
the number of false alarms using REDFISH2, the values for minimum
number of files deleted and minimum V∗[k] will be tuned differently.

We define a second triplet of values N∗, T∗ and V∗
thres. These are

equivalent to N, T and Vthres but they are only used in the second set of
rules in REDFISH2.

The implementation in pseudo-code of REDFISH2 is very similar to
the algorithm shown for REDFISH1 (Algorithm 1), so we omit it. First,
the checks in REDFISH1 are carried. In case of no alarm, a new set of
equivalent checks is carried, this time changing N to N∗, T to T∗, Vthres
to V∗

thres and carrying the computation of bytesR and bytesW ignoring of
the filesystem path.

4.5. Parameter tuning

We tune the values for the parameters (N,T,Vthres) in REDFISH1
and (N∗,T∗,V∗

thres) in REDFISH2 in order to reduce the amount of false
alarms (false positives) and maximize true detections. We proceed first
with the parameters for REDFISH1, as they are also used in REDFISH2.

4.5.1. Parameters in REDFISH1
Our goal is the fast detection of every ransomware strain. Our mea-

surement of detection speed will be based on the number of files lost
before the ransomware is detected. The parameter N is the minimum
number of deleted files before the algorithm can trigger the alarm,
therefore a low value of N is recommended. We will show that we detect
the ransomware activity in all the samples (100% success rate) with a
number of lost files close to the minimum value N, using small values
of N (around N=10).

Anomaly detection systems are prone to false positive alarms (Vidal
et al., 2017; Sari, 2015). It is usually considered better to have some
false positives than to fail on the detection of a zero-day attack (Liao
et al., 2013). However, false positives are dangerous, as they reduce
user confidence in the detection system, increasing the possibility that
he could ignore a true alarm. Therefore, we aim not only for 100%
ransomware detection rate but also for zero false positives. In order to
reach this goal we use the eight one-day-long traffic traces we have col-
lected in two different user and network scenarios. To summarize the
procedure followed, we take the parameter value space (N,T,Vthres) and
reduce it to the subset of configurations for which all the ransomware
strains are detected and no false alarm would be triggered for the train-
ing trace. In order to achieve this objective, for every value of (N,T)
we select the value of Vthres such that no false positive will be triggered.
Within this subset we search for the values that offer 100% ransomware
detection with the lowest N value, in order to detect the malware with
the minimum number of files lost.

We search for the best combination of parameters using a single
training trace. Once we find a suitable operational point, we check the
number of false positives using the rest of the traces with normal user
behaviour. Even though we select the parameters for no false positives,
this will be guaranteed only for the training trace, so we must check,
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Algorithm 1 REDFISH1.
deleteEvtList ← new empty list of Event(t,minBytes)
bytesR ← new empty dictionary of Bytes(path)
bytesW ← new empty dictionary of Bytes(path)
procedure REDFISH1CHECKFORRANSOMWARE

path ← path from SMB message
if type in SMB message=READ then

bytesR(path) + = bytes read in SMB message
if type in SMB message=WRITE then

bytesW(path) + = bytes written in SMB message
if (type in SMB message=WRITE) or (type in SMB message=REMOVE FILE) or (type
in SMB message=TRUNCATE FILE) then

deleteEvent ← new Event
t in deleteEvent ← time in SMB message
minBytes in deleteEvent ← min(bytesR(path), bytesW(path))
add deleteEvent to deleteEvtList
bytesR(path) ← 0
bytesW(path) ← 0
while t in deleteEvent − min(t from all Event in deleteEvtList) > T

do
remove oldest Event from deleteEvtList

if number of elements in deleteEvtList = N then
RWbytes ← sum(minBytes from all Event in deleteEvtList)
RWspeed ← RWbytes∕(max(t in deleteEvtList) − min(t in deleteEvtList))
if RWspeed>Vthres then

rise Alarm
else if number of elements in deleteEvtList > N then

remove oldest Event from deleteEvtList

using other traces, that the parameters provide good results. We detail
the results from each step in the following paragraphs.

We apply the detection algorithm to the traffic trace Campus0 as the
training trace, with a value of Vthres = 0 and a wide range of values for
N and T. This is a trace where no ransomware was present. For every
(false) alarm situation, we record the measured value of V. Fig. 3 shows
the maximum value of V recorded in any alarm for each pair of values
(N,T), which we call Vthres(N,T). This is the minimum value of Vthres
which assures that for this traffic trace there will be no alarms, as no
one took place with a higher value of V.

High values of T take to more alarm cases in the training trace.
The reason behind this is that a user is more likely to delete N files
in a larger time interval. Having more alarm cases takes to a larger
Vthres(N,T), that corresponds to the worst-case alarm. This increase in
Vthres(N,T) reaches a maximum for values of T > 30 s, which depends
on N. It is expected that a higher value of Vthres(N,T) will take to more
cases of real ransomware action that will not reach that throughput,
therefore it takes to worse results in positive detection.

Fig. 3. Maximum measured V, which translates into the threshold value of V
that assures no false alarms in the training trace Campus0. Values of Vthres = 0
are not plotted due to the logarithmic scale. A interpolation is added for clarity,
even though N takes only integer values.

For small values of N it is easier to find cases where the user deletes
N files in a short period of time, therefore increasing the number of
alarm situations and the value of Vthres(N,T). Fig. 4a shows the value of
Vthres(N,T) fixing the value of N. Values of N larger than 5 are advised;
they provide low values of Vthres(N,T) which, as will be shown later,
offer fast ransomware detection.

Fig. 4b shows the value of Vthres(N,T) fixing the value of T. When
N > 7 the value of Vthres(N,T) is always below 3 Mb/s, for any value of
T. These rates are below those expected for read or write operation on
any disk array in an office environment.

We check the algorithm detection capabilities using the ransomware
traces presented in section 3. For every tuple (N,T,Vthres(N,T)) and
every ransomware traffic trace we run the algorithm from the begin-
ning of ransomware action. When the alarm is triggered we measure
the amount of files that were lost and the time elapsed until that point.
We reset the algorithm on that point and let it continue running with
the rest of the trace until another alarm is raised. With this procedure
we simulate a situation where the detection algorithm could start run-
ning in almost any point of time when the ransomware is already active.
With these data we can obtain the number of cases where the minimum
number of files N is lost or how much time elapsed on average until
ransomware detection.

Fig. 5 shows the percentage of cases where exactly N files were lost
before ransomware detection, using a configuration (N,T,Vthres(N,T))
and the ransomware traffic traces. Having just N deletion events is the
best expected result, as the alarm cannot be raised before that amount
of files is lost. We have marked using a darker colour in Fig. 5 the con-
figuration cases for which no ransomware sample escapes undetected
(100% true positive detection). The worst detection results are obtained
when simultaneously a small value of T and a large value of N are con-
figured (lower-left corner in Fig. 5). In this range not all ransomware
samples are detected and there is a drop to less than 50% of the cases
where we lose only N files before ransomware detection (if it is detected
at all). The best results are obtained for large values of both T and N.

For small values of N, Fig. 4b shows that the configured Vthres for
no false positives is large (tens of Mb/s). This Vthres takes to more cases
where the ransomware does not reach that throughput with the mini-
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Fig. 4. Threshold values of V that assure no false alarms with training trace Campus0.

Fig. 5. Percentage of cases where only N files are lost with an algorithm con-
figuration with no false positives with the training traffic trace.

mum number of files lost, but requires more time to trigger the alarm.
For N ≥ 7 and T ≥ 20 s, the probability of detection with the minimum
number of files lost is above 90%, getting above 98% for N ≥ 10. 100%
detection is achieved with larger values of lost files.

After this training process we select N=10 files and T=20 s as the
reference configuration values for REDFISH1.

N files must be lost before the ransomware is detected. However,
this event can take place in a very short time. Fig. 6 shows the com-
plementary cumulative distribution function for the time until the ran-
somware is detected with a configuration of N=10 files, T=20 s and
Vthres = 107 Kb∕s. For 99% of the cases it takes less than 20 s before
exactly 10 files are lost and the alarm is triggered. For 90% of the cases
it takes less than 4 s to detect ransomware action. The alarm can be
triggered before the time interval T is expired, as long as enough files
are destroyed and the disk activity reading and writing is above the
threshold.

4.5.2. Parameters added in REDFISH2
All the available ransomware samples are detected using REDFISH1

procedure. However, for the case of ransomware that violates the same-
path condition we tune the parameters (N∗,T∗,V∗

thres) in the extra secu-
rity check implemented in REDFISH2. The recommended values for
(N,T,Vthres) in REDFISH2 are the same as the ones for REDFISH1.

Fig. 7 shows the pairs of (N∗,T∗) that result in no false positives
for the training trace when V∗

thres = 0. For example, using T∗ = 20 s
and N∗

≥ 40 there are no false positives. The global speed V∗[k] is
sensitive to any disk operation from benign software so it is normal
that we obtain N∗ > N. The smallest values of N∗ are obtained for
the smallest T∗. It is not reasonable to use a value of T∗ smaller than
T, therefore, T∗ = T = 20 s is the minimum or optimum value for

Fig. 6. Complementary cumulative distribution function for the time until the
ransomware is detected (T = 20 s,N = 10,Vthres = 107 Kb∕s).

T. Using T∗ = 20 s we only require N∗ = 40 in order to achieve 0
false positives. However, this is only guaranteed for the training trace.
Taking into consideration that V∗[k] is very sensitive to normal user
actions, it is advisable to select a larger value of N∗. We select to
enlarge 25% the minimum value, obtaining N∗ = 50. We provide
in a different section a sensitivity analysis on this parameter. Using
T∗ = 20 s and N∗ = 50 there is no need for a value of V∗

thres larger than
0, however, we select V∗

thres = Vthres in order to remove possible false
positives. The value selected for Vthres is small and it will be shown that
it does not block the detection of any ransomware.

With this set of parameters, we run REDFISH2 using the ransomware
samples in Table 2, but ignoring the path where each read or write oper-
ation takes places. This way, only the extra rules in REDFISH2 will be
able to detect the ransomware. This simulates a worst case scenario
where disk operations from ransomware take place in completely unre-
lated filesystem paths from each other. The results show 100% detec-
tion rate (all ransomware samples are detected). 93.18% of the alarms
raised when the 50th file was deleted. For 95% of the cases the alarm
was triggered before 63 files were lost and for 99% of the alarms, less
than 104 files were lost.

4.6. Analytical model for ransomware detection

In order to measure the effectiveness of the detection proposal we
provide an analytical evaluation of both the probability of ransomware
detection with minimum file losses (true positives) and the probability
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Fig. 7. Combinations of (N∗,T∗,0) that result in no false positives in REDFISH2
for the training trace.

of false alarms (false positives).
The detection of ransomware is based on two events that must take

place simultaneously:

• Event eT: At least N deletion events take place in less than T seconds.
• Event erw: The data rate of bytes read&written between first and last

deletion event is at least Vthres.

If both events happen when the traffic is from normal user activity,
we say that a false positive detection took place. If not both events hap-
pen when the traffic contains ransomware action, then the algorithm
misses an early detection. It can still detect the ransomware but it will
take more than N lost files. Obviously we want any of these incidents
to be very rare.

Let ℙ(eT) be the probability of event eT from an initial deletion event
and ℙ(erw ∣ eT ) be the probability of V exceeding Vthres in the time period
when eT takes place. The alarm rises when both events eT and erw take
place. This corresponds to probability ℙ(eT ∩ erw). As an approximation
we suppose that both events eT and erw are independent, and as an
upper bound we take a worst case of ℙ(erw) = 1. We will later prove
that this last hypothesis is reasonable. Then, as shown in equation (12),
we can approximate the target probability by the probability of eT.

ℙ(eT ∩ erw) = ℙ(eT )ℙ(erw ∣ eT ) = ℙ(eT )ℙ(erw) ≤ ℙ(eT) (12)

In order for eT event to take place, at least N files must be deleted in
less than T seconds. On the following sections we provide an estimation
of the probability of detecting the ransomware right when the N-th file
is lost by offering and analytical model for ℙ(eT ). We also estimate the
false alarm probability for a large population of users. This last result is
based on REDFISH algorithm and a model for normal user behaviour.

4.6.1. Probability of ransomware fast detection with minimum file losses
Ransomware reads a file, writes its encrypted content and removes

the original file. The last step could be omitted if the encrypted version
overwrites the original file, however the original unencrypted file con-
tent is always lost. The files are encrypted sequentially, so a time series
of deletion events {𝜏k} is created, where the time between these events
{tk} is the result of the time it takes to read, encrypt and write each file.

During each time interval tk the ransomware reads, encrypts and
writes a file; therefore this time must correlate to the file sizes, as
larger files take more time to transfer from the network file share to
the infected host and back.

We use the model described in section 3 for the distribution of file
sizes in a typical user disk. File k has size sk and all the sk are i.i.d.
random variables. The files are distributed across the directory struc-

ture and the ransomware typically does some kind of deep breadth first
directory tree traversal (Scaife et al., 2016). Each sk is a combination
of a lognormal random variable and a Pareto tail. We approximate the
random variable with a lognormal, as it generates more than 99.99% of
the values (Agrawal et al., 2009). Equation (13) defines the probabil-
ity density function (PDF) for the lognormal random variable, based on
two parameters 𝜇 and 𝜎.

fLN(x) =
1

𝜎x
√

2𝜋
e
−(ln x−𝜇)2

2𝜎2 (13)

We estimate the tk random variable based on the file size to trans-
fer and a constant transfer speed s. The resulting tk = sk∕s are i.i.d.
random variables following a lognormal distribution. The parameter s
depends on the transfer speed between the user host and the filer. This
parameter is influenced by the available network capacity, user host
processing speed, filer file access speed, number of simultaneous users
and SMB and TCP protocol parameters (windows sizes, delay acknowl-
edgements, congestion avoidance algorithms, etc.). File access speeds in
nowadays enterprise networks are in the range of hundreds of megabits
per second. Lower transfer speeds would seriously hamper file sharing
users and therefore are infrequent in an enterprise-grade local area net-
work. The proposed detection algorithm could behave worse for lower
speeds. Hence, we assume a very conservative worst case range from
10 Mb/s to 100 Mb/s transfer speed per user, while typical enterprise-
class network sharing appliances provide several 10 Gb/s network links
(Isilon All-Flash Scale-Out NAS Storage; QNAP).

In this scenario, ΔN𝜏k is the sum of N lognormal i.i.d. random vari-
ables. Its PDF is the convolution of N lognormal PDFs. There is no
known closed form for this convolution. The PDF can also be computed
from the product of the characteristic function of N lognormal random
variables. However, the characteristic function for the lognormal distri-
bution is also not known. The research literature offers many published
works with different approximations to the distribution of the sum of
N lognormal random variables (Zhang and Song, 2008; Beaulieu and
Rajwani, 2004; Nie and Chen, 2007; Lam and Le-Ngoc, 2006). We have
selected the systematic procedure offered in Zhang and Song (2008),
based on the Pearson’s family of functions.

Based on the lognormal parameters recommended from Agrawal et
al. (2009), the PDF for the selected distribution is shown in equation
(14) (Pearson type-IV), where the parameters u, d, m, and v are com-
puted from the lognormal sample and k is a scaling factor for a total
cumulative probability of 1. For brevity, we show only the results from
the procedure, and we refer the reader to (Zhang and Song, 2008) for
more details.

fIV (x) = k
(

1 + (x + u)2
d2

)−m
e−vtan−1( x+u

d ) (14)

Fig. 8 shows the probability of not detecting the ransomware when
the tenth file is lost, obtained from the above-mentioned approxima-
tion. This is the probability that the sum of the N=10 lognormal ran-
dom variables results in a value above T=20 s. The probability is below
0.01 for transfer speeds larger than 12.7 Mb/s. For a network with
100 Mb/s transfer speeds between host and filer the probability of not
detecting the ransomware when the tenth file is lost is below 0.001
(0.1%).

We must highlight that this last result does not mean that in 0.1%
of the cases the ransomware would not be detected. It only means that
it will not be detected when the tenth file is lost but it will be detected
later. For example, in case the probability of missing the ransomware
in the 10th deletion event is 0.001 then the probability of missing it
also when the 20th file is lost is at most 1 − (0.001)2 = 0.999999, or
more than “five-nines”, which is a typical quality requirement in telecom
networks.
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Fig. 8. Analytical results for the probability of fast ransomware detection.

4.6.2. Estimation of ℙ(erw)
We have used a worst-case bound for ℙ(erw) = 1. We show now

a better approximation using a similar methodology to the previous
section.

Let s (constant) be the transfer speed and sk be the i.i.d. lognormal
random variables describing the file sizes (with lognormal parameters
𝜇 and 𝜎). When a program opens a file, it sends a CREATE Request
SMB message to the file server. Once the response is received, it can
send READ Requests in order to read the file content and later WRITE
Requests in order to write the encrypted version of the file. The amount
of bytes transferred is 2sk. These bytes are transferred at speed s, there-
fore it takes 2sk∕s seconds. Between the CREATE Request and the time
when the file starts being received there is a gap due to search times
at the file server hard disk (Fig. 9). If the disk is a mechanical drive
we can expect access times in the range of several milliseconds. Let te
the extra time in the whole operation, when no data is being trans-
ferred.

When N files are transferred following this procedure we can com-
pute and average transfer speed as shown in equation (15). The numer-
ator is the amount of bytes in the file sizes because REDFISH uses the
minimum value between bytes read and written. The denominator takes
into account both operations of read and write in the time interval, and
an overhead due to N files affected. The event erw is the event of obtain-
ing an average measured speed above Vthres = 107 Kb∕s when N = 10
files are deleted. Therefore ℙ(erw) = ℙ(ve > Vthres) and we only need to
compute this last value.

ve =
∑N

k=1 sk

Nte +
∑N

k=1
2sk
s

(15)

We use the definition of ve and obtain a result that depends on
NVthres∕s (equation (16)).

Fig. 9. Waiting times in file transfers.

ℙ(ve > Vthres) = ℙ

( ∑N
k=1 sk

Nte +
∑N

k=1
2sk
s

> Vthres

)

= ℙ

( N∑
k=1

sk >
NteVthres

1 + N 2Vthres
s

)
(16)

The value of s is in the range of several megabits per second, as it
correspond to the file transfer speed. We have selected Vthres at least
an order of magnitude smaller (107 kb/s). Therefore, we are interested
in computing ℙ(ve) in a range of values for which we can safely say
that 2NVthres << s, therefore 2NVthres∕s << 1 and equation (16) is just
approximately equation (17). For Vthres = 107 Kb∕s and N = 10 this
requires s >> 2 Mb∕s. We can therefore assume this approximation for
transfer speeds above tens of megabits per second.

ℙ(ve > Vthres) ≈ ℙ

( N∑
k=1

sk > NteVthres

)
(17)

Computing this last probability is straightforward. Based on a sim-
ilar procedure to previous section, sk are the i.i.d lognormal random
variables used for modeling file sizes, therefore

∑N
k=1 sk can be approx-

imated using the Pearson type-IV (equation (14)). From our experi-
ments, the value of te is in the range of a few tens of milliseconds,
however, it can depend on the response times from the hard disk in
the server. For te = 50 ms (which can be considered large) the result is
ℙ(ve > Vthres) ≈ 0.9942 and for te = 10 ms the result is ℙ(ve > Vthres) ≈
0.999948. We can therefore assume that for transfer speeds above tens
of megabits per second, ℙ(erw) ≈ 1.

4.6.3. Model for false detection probability
False positives take place for normal user activity (no ransomware

is active) when normal user deletion events cluster close together. In
order to estimate ℙ(eT ) we require a model for the normal user deletion
event times.

We take the experimental distribution for the time between deletion
events, tk, from the data in the training trace Campus0. Fig. 10 shows
the experimental cumulative distribution and a mean-squared-error fit
using a Weibull distribution.

A Weibull random variable presents the cumulative distribution
function shown in equation (18), where 𝛼 and 𝛽 are the distribution
parameters.

ℙ(tk > x) = 1 − e−
(

x
𝛽

)𝛼
, x ≥ 0 (18)

Fig. 10. Cumulative distribution function for the time between events (Campus0
traffic trace) and a fit using a Weibull distribution.
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Based on (Yilmaz and Alouini, 2009) we can calculate the distri-
bution for ΔN𝜏k as the sum of N i.i.d. Weibull random variables. We
approximate the result using equation (19) from Johnson (1960).

ℙ(eT) = ℙ(ΔN𝜏k < T) = ℙ

( k−1∑
i=k−N+1

ti < T

)

≈ 1 − e−
(

p
𝛽

T
)𝛼 N−2∑

k=0

1
k!

(
c
𝛽

T
)𝛼k

= 1 −
Γ
(

N − 1,
(

c
βT

)α)
Γ(N − 1)

(19)

Γ(n) is the gamma function, Γ(n, x) is the incomplete gamma func-
tion and c is computed using equation (20).

c =
Γ
(

N − 1 + 1
α

)
(N − 1)! Γ

(
1 + 1

α

) (20)

The mean-squared-error fit shown in Fig. 10 provides estimated
parameter values of 𝛼 = 0.336 and 𝛽 = 100.8 for the Weibull distri-
bution. The resulting value of c is 17.82 and ℙ(eT) = 0.000032. This is
the probability of a false alarm for N=10 consecutive deletion events,
measured as the probability that 10 deletion events take place in less
than 20 s. For a single user there could exist several opportunities
along a single day when the alarm could be raised, simply because
he could delete more than N files and each group of N events provides
an alarm opportunity. If a single user deletes on average M files in a
single day, we can estimate a maximum number of alarm opportunities
opts = min{0, ⌊M − N + 1⌋}. Assuming independent events, the proba-
bility of one or more false alarms raising in a single day for one user
(puser) is just the result of equation (21).

puser = ℙ(alarms for single user 1 day ≥ 1) = 1 − (1 − ℙ(eT))opts (21)

We have estimated M from the behaviour of more than 300 users in
the training trace Campus0. The result is puser = 0.00022. Then, for a
population of 300 independent users the probability of at least one false
alarm during a whole day would be pday = 0.065 or 6.5%. Therefore,
the expected time until the first false alarm would be around 15 days.

5. Experimental results

Parameter tuning for ransomware detection has been accomplished
using the whole set of ransomware samples presented in Table 2. For
N=10 files lost in a time interval of T=20 s, using Vthres = 107 Kb∕s,
we obtained 100% ransomware detection with REDFISH1, with 99%
of the cases where the ransomware is detected immediately when the
tenth file is lost. In 99% of the cases the alarm raises less than 20 s after
ransomware action begins. These results have been obtained aggregat-
ing the behaviour from all the ransomware samples. However, there
could be ransomware families offering better results at the expense
of other families that could present worse detection rates. In order to
detect this possible behaviour we analyse in this section each family
separately.

Even though no false positives are possible for the training trace they
could appear in other days or other network scenarios, due to changes
in user behaviour. In this section we check the results using other traces
in the same environment and also using a large traffic trace from a real
private business scenario.

5.1. Detection of different ransomware families with REDFISH1

Fig. 11 shows, for each ransomware family, the percentage of cases
where the ransomware is detected with exactly N files lost, for a range
of values around N=10. For each value of N, a different Vthres is con-
figured, according to the results from Fig. 3.

Most families present a slow improvement when N increases, reach-
ing optimal detection with percentages above 90% for N > 10. How-
ever, a few families show a steep improvement on that vicinity. For

Fig. 11. Percentage of cases where only N files are lost for T=20 s and each
ransomware family.

N < 10, “Revenge” and “CTBLocker” families offer only 50% of cases
where the ransomware is detected with only N files lost. For N ≥ 10
they raise to 85% for “CTBLocker” and above 95% for “Revenge”.

“WannaCry”, for T=20 s, presents a different behaviour, with low
sensitivity to changes in parameter N in the range from 4 to 16 files.
The encryption-and-deletion sequence for this family of ransomware is
slightly different from the others. Instead of encrypting and then delet-
ing each file, it batches encryption and deletion events. After encrypting
a batch of around 200 files, it deletes all of them before starting a new
batch. The result is percentages of fast detection for a configuration
with N > 10 slightly above 85%.

Increasing T to 120 s we can observe in Fig. 12 an improvement in
“WannaCry” detection, getting to percentages above 95%. This is at the
expense of slightly worse results for “CTBLocker”. For “CTBLocker”,
using T=20 s and N between 4 and 16 files lost, only in 70% of the
cases it is detected with exactly N files lost.

From Figs. 11 and 12 it is not clear whether in the rest of the cases
the ransomware is not detected, it is detected after a few more files are
lost or after many more files are lost. To clarify this point we show in
Fig. 13 the maximum number of files lost in 99% of the alarms. For
most families, in 99% of the cases the ransomware is detected before
2xN files are lost. For “CTBLocker”, 99% of the alarms raise before 80

Fig. 12. Percentage of cases where only N files are lost for T=120 s and each
ransomware family.
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Fig. 13. Maximum number of files lost for 99% of the alarms. T=20 s.

files are lost, with an average of around 20 files (the average is not
shown in the figure). Therefore, the results are still good in absolute
numbers. We will show in section 6 that those files are recoverable
from the traffic trace.

The explanation for the results from “CTBLocker” comes from its
special behaviour encrypting files. It does not only encrypt but it also
compresses the file. Disk-write activity is therefore much lower than
read activity and when the read&write speed threshold is high it results
in harder detection. This diversity in the behaviour of different ran-
somware families serves as an additional validation of the algorithm
effectiveness.

5.2. Validation of REDFISH1 on different user scenarios

As shown in section 4, the combination of parameters T=20 s,
N=10 and Vthres = 107 Kb∕s provides the best configuration using
small values. However, the results could be very sensitive to small
changes in user activity. We test the results using different traces and a
small set of parameters, in order to detect whether for other scenarios
they are a good choice or not.

Table 5 shows, for each traffic trace, the number of false positives for
each configuration. It also shows the value of parameter N that results
in no false positives. The number of false positives is very small, even
for the Private traffic trace. We must highlight that this last trace con-
tains the activity from 4882 users, accessing a total of 1677 different
SMB servers during a whole day (24 h). It even includes any late-night
automatic processes that could access the shared volumes.

For the CampusX traffic traces there is at most one false positive
per day. The results are as good for T=120 s as for T=20 s. For the

trace Campus1 the larger time interval T=120 s allows a false alarm to
appear that does not exist for T=20 s. In Campus6 the contrary happens
and an alarm that raises for T=20 s is not present for T=120 s. This is
probably due to the different Vthres for each configuration.

For the Private traffic trace there are at most 3 false alarms in the
whole day (using T=120 s). They are due to:

• Database file modifications: Files from database software are usually
overwritten when changes are applied. If several database files are
modified by the same user in a short time period, an alarm could
raise. This happens only once in the whole day because a user mod-
ifies 10 database files in less than 2 min.

• Modifications to several Microsoft Excel files in a short time: This is
probably due to files linked among themselves. It happens twice in
the whole day, both cases for the same user.

These 3 false alarms are the only alarms during a whole day. During
this same day the users open collectively more than 40 million files
(Table 1). This an extremely low rate of false positives as only about 1
in 10 million opened files triggers a false alarm.

For T=120 s and N > 12 there are no false positives in the Private
traffic trace. For the CampusX traffic traces this is achieved using a
different configuration for each day. In the worst case we can guarantee
that using N=61 files lost there are no false positives any day.

5.3. Validation of REDFISH2

REDFISH2 extends the logic in REDFISH1 and obtains the same
detection results for all the available traces. It presents an advantage
only for still non existing ransomware behaviour. We have carried a
sensitivity analysis varying the parameters exclusive to REDFISH2 and
adapting the available ransomware samples for not triggering the alarm
in the part of the algorithm that is shared with REDFISH1. This analysis
shows whether REDFISH2 could detect these samples or not, how many
files would be lost and the number of extra false positive alarms that
could arise.

Table 6 shows the number of false positives for each of the sam-
ples in the two different network scenarios. It also shows (column “N
lost”) the percentage of alarms that are triggered using the ransomware
samples right when the N∗th file is lost. We have varied the parame-
ter N∗, keeping the values of T∗ and V∗

thres. For all the selected values
we achieve 100% detection rate, i.e. all the ransomware samples are
detected using exclusively REDFISH2 second set of rules. Even the traf-
fic trace Private (containing the traffic from 4882 users) does not show
any extra false positive result. The percentage of alarms that stop the
ransomware when exactly N∗ files are lost is lower the larger the value
of N∗. This means that a very large N∗ is not advised, as both the alarm
cannot be triggered with less than N∗ files lost and the number of cases
with this optimal results gets reduced the larger the value of N∗.

We can state that REDFISH2 contains a low cost modification of the
logic in REDFISH1, keeping its good results and adding only a small

Table 5
False positive events for different configurations in REDFISH1.

T N Vthres (Kb/s) Number of false positives

Campus1 Campus2 Campus3 Campus4 Campus5 Campus6 Private

20 10 107 0 1 0 0 0 1 2
20 12 107 0 1 0 0 0 1 2
20 14 107 0 1 0 0 0 1 1
20 16 107 0 1 0 0 0 1 0
20 21 107 0 0 0 0 0 1 0
20 61 107 0 0 0 0 0 0 0

120 10 263 1 1 0 0 0 0 3
120 12 263 1 1 0 0 0 0 1
120 14 263 1 1 0 0 0 0 0
120 21 263 1 0 0 0 0 0 0
120 61 263 0 0 0 0 0 0 0
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Table 6
False positive events and ransomware detection rates for different configurations in REDFISH2.

N∗ Number of false positives (T∗ = 20 s,V∗
thres = 107 Kb∕s) N∗ lost N∗ (99%)

Campus1 Campus2 Campus3 Campus4 Campus5 Campus6 Private

50 0 1 0 0 0 1 0 93.18% 104
60 0 1 0 0 0 1 0 90.43% 175
70 0 1 0 0 0 0 0 89.6% 213
80 0 1 0 0 0 0 0 87.07% 291

risk of extra false alarms with a proper configuration. As no existing
ransomware presents a behaviour that escapes REDFISH1 detection, the
alarms from REDFISH2 could be reduced to a “Warning” category, with
a reduced impact of any false positive.

5.4. Validation of analytical models

In section 4.6.1 we provided an approximated model for the prob-
ability of ransomware detection when the Nth file is lost. The result
depends on the distribution of file sizes accessed from the shared vol-
ume and the transfer speed between each client and the filer.

We have configured a testbed similar to the one described in section
3.2.2, which was used to obtain the ransomware samples from Table 2.
We have improved the computing hardware in order to support a third
virtual machine, acting as an Ethernet bridge between the infected
client and the filer. In the bridge we configured a rate limiting traffic
policy in order to modify the transfer speed. Using this testbed we ran a
sample of “Cerber”, still active, varying the transfer speed and obtaining
the detection results from REDFISH1 using the optimal parameters.

Fig. 14 shows the analytical results (the same as shown in Fig. 8)
compared to the experimental ones. Both curves are reasonable close
and the analytical one provides a worst case bound, as the curve is
always above the experimental one. The analytical model takes some
approximations for small values of transfer speed, however, it still
seems valid for values as small as 2 Mb/s. The maximum rate limit-
ing values we could safely configure in the experimental testbed were
around 50 Mb/s. We must highlight that it is a rate per user. Therefore,
in a real deployment where for example 300 users reach 50 Mb/s each
one, we are loading the filer with 15 Gb/s. Therefore, the validation
range is reasonable.

In section 4.6.3 we provided an approximated model for the proba-
bility of false positives. It required a model for normal user behaviour,
that we obtained from the traffic traces. In order to validate this result
we have shown that in the seven traffic traces we have available, only a

Fig. 14. Analytical results for the probability of fast ransomware detection.

few false positives appear. The available data for validation is short, as
each full day of traffic provides only one sample. The analytical result
we have offered was computed for a population of about 300 users.
As the traffic trace Private contains the traffic from 4882 users we can
assume that it is equivalent to approximately 16 one-day traces from
300 users each. In this set of 16 traces we obtain 2 false positive results.
With these results we test the null hypothesis that false positive detec-
tion is a Bernoulli trial with probability p = 0.065. An observed sample
of 2 false positives out of 16 experiments has a statistical significance
(or p-value) of 𝛼 = P (Binomial(16,0.065) ≥ 2) = 0.27. Thus with a con-
fidence level of 73%, we can accept the hypothesis that the analytical
model is correct. This confidence interval could be improved with a
larger number of traffic traces or longer traces (several days long).

6. Discussion

6.1. Comparison to previous works

As explained in section 4, there are no methods in the literature
directly applicable to the file sharing scenario. All of them, either
require information not available in the network traffic or require
expensive computation in a scenario with several gigabits per second
of traffic from a large population.

In order to compare the success and failure results from REDFISH to
previous proposals, we show in Table 7 the most relevant performance
results. We have focused on only a few metrics, as all of them are diffi-
cult to compare due to differences in the scenario. For example, many
ransomware samples become inactive after their command and control
servers are blocked, so the comparison against the same samples is usu-
ally impossible. Also, not all the papers offer clear data about all these
metrics.

The percentage of ransomware samples detected is the most clear
result. It is in a range from 90% to 100%. However, as shown in the
sixth column, the algorithms have been tested with very different num-
ber of ransomware families. (Alam et al.,; Continella et al., 2016; Khar-
raz and Kirda, 2017) offer 100% detection rate, but they have tested
with 1, 11 and 29 different ransomware families respectively, which
offers very different degrees of reliability. REDFISH has been tested
against 19 different ransomware families, available since 2014. It has
been designed for 100% detection rate, which it achieves.

The metric of false positives is based on experiments with normal
users. Different populations of users and applications are recorded in
each paper, so comparisons are again difficult. In general, the percent-
age of false alarms for the whole population of clean measurements is
offered. In this scenario, REDFISH offers 0 or 1 false positive result in
traces with more than 300 users for a whole work-day. In a trace con-
taining thousands of users in a corporate environment for a whole day
it reported only 2 false alarms. No previous work has validated false
positive results against such large scenarios.

The number of files lost before ransomware detection varies among
different algorithms. The best results are usually offered by those archi-
tectures where the lost file can be recovered from a backup. REDFISH
is in this category.

Finally, most of the previous works are based on anti-malware soft-
ware installed on the user computer, so they incur in CPU or disk usage.
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Table 7
Comparison to other methods in the literature.

Method % detected % False positives Files lost Overhead Samples/families

N. Scaife et al. (2016) – – 10 10 ms 492∕14
A. Kharraz et al. (2015) – – – – 1359∕15
D. Sgandurra et al. 93.3% 1.6% – – 582∕11
F. Mbol et al. (2016) >90% 0.05%–0.25% – – 1∕1
A. Continella et al. (2016) 100% 0.038% Recovered 1.8–3.8× 383∕11
M. Shukla et al. (2016) – – <20 1 − 2% (unknown)
A. Kharraz and Kirda (2017) 100% 0.8% 5 7 − 9% 677∕29
R. Vinayakumar et al. (2017) 98% <1% – – 755∕7
M. Alam et al. 100% ≈0% Recovered – 1∕1
M. M. Ahmadian and Shahriari (2016) 98% Varies – – 8/(unknown)
Y. Feng and Liu (2017) 100% – 0 “low” 1∕1
K. Cabaj and Mazurczyk (2016) – – – – 332∕1
M. M. Ahmadian et al. (2015) 100% 0% 0 – 20∕14
F. Quinkert et al. 96% – 0 – 1∕1
A. Kharraz et al. (2016) 96.3% 0% – – 2121
H. Kim et al. (2017) – – Recovered – –
E. Kolodenker et al. (2017) – – Recovered – 107∕20
T. Lu et al. (2017) 95% 7 − 8% – – 1000/(unknown)
M. M. Hasan and Rahman (2017) 97% 3% – – 360∕20
REDFISH 100% 1 out of 15 days Recovered 0% 54∕19

The metrics vary among papers but on this respect we must highlight
that REDFISH adds no load to these computers, as it runs in an isolated
network appliance.

6.2. Security, performance and file recovery

REDFISH ransomware detection system does not add any delay to
user traffic, as the analysis probe works off-path, receiving a copy of
the traffic. Ransomware detection takes a few seconds and in 99% of
the cases it can detect the ransomware before 10 files are lost. When
the alarm is triggered the probe can use SDN control mechanisms (e.g.
OpenFlow) to configure blocking rules for the user traffic, denying any
further access to the filer. The alarm can be collected in a Network
Management System (NMS) and trigger the adequate administrative
actions in order to remove the ransomware and allow further access
to the disk array. All the actions related to the detection and blocking
procedures can be taken remotely, accessing the network probe config-
uration, without any host access.

No software must be installed in any user host. No modification is
needed in the filer or the network disk array. Only the analysis probe
must be added to the network, receiving a copy from the traffic to the
filer network port and allowing access to the SDN enabled switch in
order to block traffic from infected users. Also, no malware that infects
the hosts can uninstall the detection software as it runs in a separate
machine (the analysis probe). This probe is configured in the manage-
ment network, not accessible from local or remote hosts.

We have evaluated the false positive probability and it is extremely
low after a correct parameter configuration (one in ten million opened
files). Although we suggest blocking any further access to the filer from
the suspected host, different options are possible. If the filer allows priv-
ilege modification or it resorts to some kind of external database system
for this purpose, then a read-only mode could be configured when a user
is suspected to be infected. This is a less intrusive mode for the case
of the extremely rare false positives, while still stopping ransomware
action.

The Private traffic trace contains more than 1Tbyte of traffic and it
reaches more than 400 Mb/s of sustained traffic. Our prototype imple-
mentation of the algorithm is capable of analysing the trace in less than
1/32th of its duration, using a single CPU core in an Intel i5-4690 run-
ning at 3.5 GHz. This means that more than 10 Gb/s of traffic can be
processed in near real-time. In contrast to other tools (Continella et
al., 2016; Kharraz and Kirda, 2017; Kharraz et al., 2016; Shukla et al.,
2016; Sgandurra et al.,), it does not analyse the content of the read and
written files, therefore much higher speeds are achievable. High traffic

network scenarios (tens of gigabits per second) can be supported and
even higher traffic could be analysed including more CPU cores. No
CPU cycles are taken from any user host, compared to locally installed
antivirus software.

Common network traffic analysis software and hardware like
HPCAP (Moreno et al., 2014), FlowScope (Emmerich et al., 2017),
DPDK (Intel) and EndaceProbe (Introducing EndaceProbe) can store the
traffic in hard disk while sustaining the analysis of 10 Gb/s links. They
usually take a circular buffer approach and delete the stored traffic after
a certain period or when the available disk space is low. Using RED-
FISH, when ransomware is detected the traffic traces for that user could
be marked for not deletion. Afterwards, a network administrator could
recover the lost files from the stored traffic. This is possible because the
ransomware must read the file before creating the encrypted version.
Once the infected host is located, the lost files can be recovered from
the SMB READ commands. This is what a plugin for Wireshark already
does (Deck, 2015). Therefore, even if some files were lost before the
ransomware was detected they can be recovered from the traffic stored
at the network probe. The recovered files are not out-of-date backups
but the exact file version that the ransomware encrypted and removed.
Therefore, 0 lost files can be achieved.

6.3. Robustness analysis

The design of REDFISH is based on intrinsic characteristics to any
ransomware. It is based on their reading and writing activity, as well
as the act of deleting files or overwriting content. Ransomware can-
not accomplish its goal without any of these three actions. However, it
could try to appear as a benign application, reducing its activity below
the thresholds that distinguish benign from malign software actions.
We provide in this section a critic analysis of any strategy that we
could imagine where a ransomware, having perfect knowledge about
the algorithm, could avoid detection.

REDFISH establishes a threshold on the read&write activity. RED-
FISH1 quickly recognises ransomware that overwrites the original file
or creates the encrypted version in the same filesystem path. REDFISH2
is insensitive to changes in file path while it is kept in the same filer.
However, if ransomware keeps its activity below Vthres it would remain
undetected. The problem in this ransomware strategy is that the recom-
mended value for Vthres is very small, around 100 kb/s. If the malware
keeps its activity below this threshold then it cannot destroy so much
data before a new periodic backup takes place. For example, if nightly
backups are implemented then the maximum amount of file data that
the ransomware could read, encrypt and destroy would be around
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1 GByte (24 h of activity at 100 kb/s). It must also be smart enough
to destroy recently modified files first, or else it could be destroying
files that have not been modified since the previous backup. This strat-
egy also offers the users more time to notice the ransomware, simply by
human detection of encrypted files. This weakness exists but the strat-
egy to use it reduces greatly the impact the ransomware could have.

The ransomware could overwrite only a fraction of the whole file.
There are already samples that follow this behaviour, although all of
them are currently detected by REDFISH. For some file formats it is
enough with a small modification in the file to render it unusable. If the
amount of bytes overwritten was small, the ransomware could destroy
many files while keeping its read&write footprint below the thresh-
old. REDFISH2 can reduce its second threshold V∗

thres to 0, increasing
only slightly the number of false positives but forcing this type of ran-
somware to keep not only their disk access speed below the threshold
but also the number of files they delete. However, using T∗ = 20 s and
N∗ = 50 the ransomware could remove almost 150 files per minute
and stay undetected if it modifies only a few bytes from each file. The
effectiveness of this strategy depends on whether the files are really
rendered unrecoverable by small modifications, which would depend
on the file types in the shared volume. For example, it would be easy to
recover any data not overwritten from a plain text file, therefore, again
the effectiveness in this strategy is low.

If the user computer has access to more than one shared volume,
from different filers, file operations to one volume and to another would
be carried in different TCP connections transporting SMB commands.
REDFISH, as it has been described, analyses each TCP connection inde-
pendently. The ransomware could read and delete files from one vol-
ume while writing the encrypted versions to a different volume, try-
ing to void increasing the read&write speed as it is measured. This
would certainly work but the scenario where it could be applied is
quite restrictive (several filers) and REDFISH could be easily extended
in order to consider any SMB session from the same IP address (which
identifies the user).

Finally, the ransomware could read and delete files from the net-
work shared volume while keeping the encrypted versions local to the
infected host. This behaviour could still be detected by REDFISH2 by
using V∗

thres = 0. Writing in the same volume as the original file is a
safer strategy for the ransomware, as the encrypted files occupy mostly
the same as the original files, so they fit in the volume. However, mov-
ing them to a different disk (which also happens in the previous attack
proposed) has the risk of filling the destination disk, therefore not being
able to continue operation.

Although we cannot prove that the strategy described in REDFISH
will work for any possible ransomware behaviour, we are confident that
any devised strategy to avoid detection will come at a cost of reduced
ransomware effectiveness, therefore the implementation of REDFISH
provides a clear advantage. The capability of file recovery from the
stored network traffic, alone, already provides benefits from the deploy-
ment of the analysis probe.

7. Conclusions

We have described and analysed REDFISH, a detection algorithm for
strains of ransomware that encrypt files in network shared volumes. The
algorithm works with a copy of the traffic, without any effect on normal
user activity. It detects the ransomware based on its basic behaviour of
reading, writing and removing files.

We have shown how the algorithm parameters can be tuned in order
to obtain 100% ransomware detection with 19 different ransomware
families. We have shown by experimentation and analytical modeling
that in more than 99% of the cases the ransomware is detected before
10 files are deleted. These files can be recovered from the traffic that
the network probe is storing, therefore a no-losses scenario is achieved.

False positives (triggering the alarm without real ransomware
action) are extremely rare: only one false alarm for 10 million files

opened, read and written in a real business scenario with more than
4800 users working for a whole day and accessing more than 1500
network shared volumes. The results are consistent with the analytical
model provided for the false positive rate.

The algorithm can be implemented in 10 Gb/s network traffic
probes, using a low number of CPU cores, without any impact on host
CPUs because no software is installed in them. The whole detection sys-
tem is out of the production network and it cannot be attacked by any
form of malware that could deactivate it.
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